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Abstract— Motivated by applications in multirobot team
selection, in this paper, we present a novel algorithm for solving
chance-constrained 0-1 knapsack problem, where the objective
function is deterministic but the weights of the items are
stochastic and therefore the knapsack constraint is stochastic.
We convert the chance-constrained knapsack problem to a two-
dimensional discrete optimization problem on the variance-
mean plane, where each point on the plane can be identified
with an assignment of items to the knapsack. By exploiting
the geometry of the non-convex feasible region of the chance-
constrained knapsack problem in the variance-mean plane, we
present a novel deterministic technique to find an optimal solu-
tion by solving a sequence of deterministic knapsack problems
(called risk-averse knapsack problem). We apply our algorithm
to a multirobot team selection problem to cover a given route,
where the length of the route is much larger than the length
each individual robot can fly and the length that an individual
robot can fly is a random variable (with known mean and
variance). We present simulation results on randomly generated
data to demonstrate that our approach is scalable with both the
number of robots and increasing uncertainty of the distance an
individual robot can travel.

I. INTRODUCTION

The knapsack problem is a fundamental problem in com-
binatorial optimization that has multiple applications in task
allocation and team formation in multi-robot systems. For
example, in algorithms to solve the generalized assignment
problem for multiple robots, the knapsack problem is a
subproblem that needs to be solved multiple times [6]. In
this paper, we consider a multirobot team formation problem,
where we consider a group of heterogeneous robots that has
to cover a given route with known length. Each robot has
a limited battery life and therefore there is a upper limit on
the distance that the robot can travel. Furthermore, the travel
distances are uncertain because they depend on uncertain
environmental variables like wind speed. We assume that
the lengths that robots can travel are independent Gaussian
random variables with known means and variances. There
is operating cost for each robot. The total cost of covering
the route is a sum of individual costs of robots. Our goal is
to find a team of robots with the minimum total cost that
covers the route with high probability (specified a priori).

The deterministic version of our problem where the travel
distances are known constants can be formulated as a 0-
1 knapsack problem. There are many methods to solve
the knapsack problem such as dynamic programming [12],
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branch and bound method [9] and other methods that com-
bine both methods [10], [7], [8]. Although solving knapsack
problem is NP-hard, there is a fully polynomial time approx-
imation scheme [12]. There are different stochastic variations
of the classical 0-1 knapsack problem that have been studied
in the extant literature. In [1], [4], [11], the authors have
studied the stochastic knapsack problem with deterministic
weights and random costs whereas in our problem we have
deterministic costs and random weights. In [2], the authors
compute a solution policy that optimize the expected total
values. Optimizing expected values provide no performance
guarantees on a particular realization of the random variables.
We want to develop methods that ensures the constraints are
satisfied with a high probability irrespective of the realization
of the random weights. An algorithm is designed to obtain
good solutions to the chance-constrained problem in [5],
by running a sequence of robust problems. The algorithm
provides an optimal solution when the costs are identical or
the uncertain weights present all the same characteristic. In
this paper, our method computes the optimal solution in more
general situation. In [3], the authors consider a stochastic
knapsack problem similar to our setting and provide a
polynomial time approximation scheme (PTAS) by using a
parametric linear programming reformulation. Our solution
to the chance-constrained problem is based on a geometric
interpretation of the problem on variance-mean plane. Our
method finds the optimal solution of chance-constrained
problem by solving a sequence of a deterministic knapsack
problems called the risk-averse knapsack problems.

Contributions: In this paper, we present a novel algorithm
that solves 0-1 knapsack problem with chance constraint. By
analyzing the feasible region of both chance-constrained and
risk-averse knapsack problems on variance-mean plane, we
prove that there exists a risk-averse knapsack problem such
that the optimal solution of chance constrained knapsack
problem is also the optimal solution of risk-averse knap-
sack problem. We use this insight to develop an iterative
algorithm where we solve the chance constrained problem
by repeatedly solving a sequence of risk-averse knapsack
problem. The key aspect of our algorithm is that we maintain
a probabilistic guarantee irrespective of the realization of
the random variables (the lengths the robots could move).
We present simulation results on randomly generated data
which show that our algorithm works efficiently. An extended
version of this paper with the proofs and more elaborate
simulation results is under review at IEEE International
Conference on Robotics and Automation, 2018.



II. CHANCE CONSTRAINED KNAPSACK PROBLEM

Let L be the length of the closed curve (or a route) that
a team of robots have to cover. We have a collection of
heterogeneous robots that have different battery life and they
can fly for different lengths. Let `i be the distance that
robot i can fly. Each robot has a different operating and
maintenance cost denoted by ci. The variable `i is assumed
to be a Gaussian random variable with mean µi and variance
σ2
i , i.e., `i ∼ N (µi, σ

2
i ), i = 1, ..., n. Our goal is to find a set

of robots from the collection of n robots that can cover the
total length L with probability p (where 0 ≤ p ≤ 1) while
minimizing the total cost. Let fi be an integer variable that
takes the value 1 if robot i is part of the team and 0 otherwise.
The integer program formulation of our problem is:

min

n∑
i=1

cifi

s.t. P

(
n∑
i=1

`ifi ≥ L

)
≥ p

fi ∈ {0, 1}, ∀i = 1, . . . , n

(1)

If we relax fi, the problem in (1) is a second order cone
program with integrality gap Ω(

√
n) [3].

Lemma 1: The CC-KAP problem in (1) with a given
probability p is equivalent to the following formulation

min

n∑
i=1

cifi

s.t.

n∑
i=1

µifi − C

√√√√ n∑
i=1

σ2
i fi ≥ L

fi ∈ {0, 1}, ∀i = 1, . . . , n

(2)

where C = Φ−1(p) is a constant.
In [3], the authors converted the problem in Equation (2)

to a parametric linear program and presented an algorithm
that for ε > 0 gives a 1 − 3ε approximate solution with
running time O

(
1
ε2n

1
ε

)
. We present an alternate parametric

formulation, where different choices of the parameter leads
to different knapsack problems. In the discussion below we
will refer to both (1) and (2) as chance constrained knapsack
problem (CC-KAP), which is a chance constrained integer
optimization problem and is hard to solve in general. In this
paper, instead of solving CC-KAP directly, we show that the
solution to CC-KAP can be obtained by solving a number
of deterministic knapsack problems (given below), which we
call risk-averse knapsack problem (RA-KAP)

min

n∑
i=1

cifi

s.t.

n∑
i=1

µifi − λ
n∑
i=1

σ2
i fi ≥ L′

fi ∈ {0, 1}, ∀i = 1, . . . , n

(3)

Here λ is the risk-averse parameter that performs a weighted
combination of the mean and variance of the travel lengths

of each robot. The parameter L′ is the constraint for the total
length in RA-KAP.

III. GEOMETRIC INTERPRETATION

In this section, we present a geometric interpretation of the
CC-KAP on the variance-mean plane in which the horizontal
axis is the variance and the vertical axis is the mean (see
Figure 1). The CC-KAP is an integer optimization problems
in which any solution is a vector of binary decision variables
fi. Given any particular solution s = [f1, ..., fn], we can
identify this solution with a point on the variance-mean
plane. The y-coordinate of this point is the sum of means for
all travel distance of robots chosen in the solution,

∑n
i µifi,

and the x-coordinate is the sum of variances,
∑n
i σ

2
i fi. The

coordinate of this point related to solution s is denoted by
(σ2(s), µ(s)). Thus the space of all possible robot teams
can be identified with points in the variance-mean plane
(however, we do not construct this explicitly because the
number of such points will be exponential in the number
of robots). Moreover, we can find the feasible region of
solution for the CC-KAP based on the chance constraint
in Formulation 2. As it is shown in Figure 1, the feasible
region for CC-KAP, denoted by C, is the space above the
parabola in the first quadrant on variance-mean plane. Since
the constraint in the RA-KAP is a linear inequality of σ2

and µ, the feasible region for RA-KAP, denoted by R, is
the space above the line whose slope is equal to risk-averse
parameter λ and y-intercept is equal to the length of the
route L′. Based on this geometric viewpoint, we present the
following lemmas (without proof).
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Fig. 1. The geometric interpretation of chance-constrained knapsack
problem. Any solution is related to a point on variance-mean plane. The
feasible region for CC-KAP is the space above the parabola while the
feasible region for RA-KAP with given λ and L is the space above the
line whose slope is equal to λ and y-intercept is equal to L.

Lemma 2: The optimal solution of RA-KAP that satisfies
the chance constraint provides an upper bound of optimal
solution of CC-KAP.

Lemma 3: There exists a RA-KAP, with some choice of
λ and L′ such that the optimal solution of CC-KAP is also
the optimal solution of the RA-KAP.



IV. ALGORITHM DESCRIPTION

Let the intersection of the feasible region of CC-KAP and
the risk-averse problem, RA-KAP, in the first quadrant be I
(I = C ∩ R). Lemma 2 implies that the optimal solution of
RA-KAP that satisfies the chance constraints is also optimal
for CC-KAP over the feasible region of CC-KAP restricted
to I. In this paper we say that the region I is “explored”. To
explore the whole feasible region of CC-KAP, namely C, we
solve multiple RA-KAPs, whose optimal solution satisfy the
chance constraint and corresponding feasible regions (Rj)
cover the feasible region of chance-constrained problem, i.e.,
C ⊂

⋃
j∈S Rj where S is the index set of RA-KAPs whose

optimal solutions satisfy the chance constraint.
The first step starts with solving RA-KAP with λ = 0

and L′ = L. If the optimal solution satisfies the chance
constraint, as shown in Figure 1 s1 is above the parabola.
The algorithm terminates because C ⊂ R. Otherwise, the al-
gorithm computes the constraint of the RA-KAP for the next
iteration by equation λ′ = C/σ where σ =

√∑n
i=1 σ

2
i fi. On

the variance-mean plane, we can treat the updating procedure
as the constraint line rotating clockwise about y-intercept
(0, L). The new constraint line will be guaranteed to be lo-
cated above the previous point. The procedure continues until
we obtain a feasible solution of chance-constrained problem
or the RA-KAP is not feasible, i.e.,

∑n
i=1 µi−λ

∑n
i=1 σ

2
i <

L. Now we can conclude that the subset of feasible region C,
denoted by II is explored although the risk-averse problem
might not be a feasible problem since there is no solution
in RI and II ⊂ RI . Note that all solutions are located to
the left of the vertical line σ2 =

∑n
i=1 σ

2
i (the line going

through Point b in Figure 1) because
∑n
i=1 σ

2
i fi ≤

∑n
i=1 σ

2
i

where fi ∈ {0, 1} ∀i. Let the subset of feasible region of
CC-KAP that is on the right hand side of vertical line be Cl.
The remaining feasible region is C\(II ∪ Cl) denoted by C′.

In the second step, the algorithm computes the intersection
of parabola and the constraint line of the last RA-KAP
in the first step (Point a in Figure 1) and intersection of
parabola and the vertical line (Point b in Figure 1). Then
we solve the RA-KAP with new constraint obtained by
connecting those two points. Since C′ ⊂ I, the algorithm
terminates if the optimal solution of RA-KAP satisfies the
chance constraint, e.g., point s2 or s4 in Figure 1. Otherwise,
we compute two new constraints for two new RA-KAPs.
The new constraints should be selected so that the solutions
of RA-KAP is different from previous RA-KAP solutions
that do not satisfy chance constraints. Moreover, the feasi-
ble regions of the new RA-KAPs, say Ia and Ib, should
cover the feasible regions of the current chance-constrained
problem, i.e., I ⊂ (Ia ∪ Ib). For example, in Figure 1, s3,
the solution of RA-KAP with constraint 3 is not feasible to
CC-KAP. Therefore we compute new constraints 4 and 5.
Our procedure guarantees that I3 ⊂ (I4 ∪ I5) and s3 is not
the solution of RA-KAPs with constraint 4 and constraint 5.
If the solution of RA-KAP with any generated constraint
j does not satisfy the chance constraint, new constraints
will be generated based on constraint j. We then solve the

RA-KAP with these constraints. If the solution of RA-KAP
with a constraint j satisfies the chance constraint, we obtain
the optimal solution in Ij and therefore there is no need
to generate new constraints from j. If the RA-KAP with
constraint j is not a feasible problem, we do not need to
generate new constraints since there is no solution in Ij .
The second step terminates when there is no new constraint
generated. Thus, we explore the whole feasible region of
CC-KAP because C′ ⊂

⋃
j∈S Rj and C = CI ∪ Cl ∪ C′. The

optimal solution is the one with the smallest objective value
among all feasible solutions of chance-constrained problem
computed by solving risk-averse problems.

We claim that our algorithm stops in finite number of
iterations. For the first step, λ increases till the solution of
RA-KAP satisfy the chance constraint. In the worst case,
λ will keep increasing until it exceeds a finite bound of λ
for which the RA-KAP is not feasible. For the second step,
the new constraints will be generated if the solution of RA-
KAP is not feasible to chance constraint. The number of
solutions is finite and the algorithm prevents obtaining the
previous solutions that are not feasible to chance constraint.
Therefore in the worst case, the algorithm finds all solutions
that are not feasible with a finite number of iterations. In
the next section, we present empirical evidence that the
above algorithm terminates in a constant number of iterations
irrespective of the number of robots.

V. SIMULATION RESULTS
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Fig. 2. The total number of RA-KAPs required for solving CC-KAP. The
length of the route is 10000 meters and the number of robots vary from 10
to 100. Each data point is obtained from 100 simulations with randomly
generated mean and variance of travel distance of each robot

We present simulation studies to understand the scalability
of our algorithm as the number of robots increase and as the
knowledge about the distance the robots can travel become
more uncertain (i.e., the variance increases). To understand
the effects of parameters such as the number of robots and the
variance of travel distance of robots, we generated different
scenarios based on randomly generated parameter values. We
first present results for simulations in which the mean and
variances of travel distance of robots are randomly generated



and the number of robots is varied methodically. Figure 2
and Figure 3 show the performance of our algorithm with the
different number of robots and uncertainty in the travel length
of robots. The results indicate that the number of robots does
not have a significant influence on the speed of our algorithm
and the number of calls to RA-KAPs is nearly a constant. In

The variance of the travel distance ×104
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Fig. 3. The total number of RA-KAPs that are used for solving CC-KAP.
The number of robots is 100, the length of the route is 50000 meters, and
the variance of travel distance vary from 100 to 22500. Each data point
is obtained from 100 simulations with randomly generated mean of travel
distance of each robot.

the first simulation, we test the effect of number of robots on
the number of RA-KAP to be solved, which influences the
algorithm performance. The algorithm to solve the RA-KAP
is dynamic programming that solves the knapsack problem
optimally in pseudo-polynomial time O(n2P ) where n refers
to the number of robots and P refers to the largest cost
among all robots [12]. The means and variances of the
travel lengths for each robot are generated independently
from a uniform distribution µi ∼ U(1000, 3000) and σ2

i ∼
U(10000, 12500). The length of the curve, L, is 10000
meters and p = 0.99. The operation and maintenance cost
for each robot is distributed randomly in uniform distribution
from 50 to 150, i.e., ci ∼ U(50, 150). Set ε = 1× 10−7. We
count the number of RA-KAPs for solving CC-KAP when
number of robots is equal to 10, 11, . . . , 100. For each case
with a given number of robots, we generate the means and
variances randomly for 100 times.

Figure 2 shows the performance of our algorithm with
different number of robots. The results show that the number
of calls to RA-KAPs is nearly a constant irrespective of
the number of robots. The blue dots represent the average
number of RA-KAPs required to solve CC-KAP while the
red dots represent the maximum number of calls to RA-
KAPs from 100 simulations. The average numbers of RA-
KAP solved is almost constant (between 2.5 to 3) irrespective
of the number of robots. In Figure 2, the maximum numbers
of RA-KAPs solved are between 3 and 7. We observe
that maximum number of deterministic knapsack problems
solved is 7 which is a small value for application in practice.

In the second simulation, we obtain the effect of the
uncertainty of travel distance of robot on the performance

of our algorithm by counting the number of calls to RA-
KAPs and the actual running time for our algorithm solving
CC-KAP with variance equal to 100, 324, 548, . . . , 22500.
For each case, we generate mean of travel distance of
robot randomly based on U(1000, 3000) for 100 times. The
number of robots is 100 and the length of the route is
50000 meters for all scenarios in this simulation. The other
parameters such as the cost, probability and ε are same as
the parameters in the first simulation. Figure 3 shows the
average number of calls to RA-KAPs is practically constant
as the variance of travel distance increases. The maximum
numbers of calls are within the range from 3 to 7.

VI. CONCLUSION

We presented a novel deterministic algorithm for chance-
constrained knapsack problem with application in multi-
robot routing with the uncertain travel distances (weights).
The key idea in our approach is to convert CC-KAP to a
deterministic discrete optimization problem on the variance-
mean plane, where each point on the plane can be identified
with an assignment of items to the knapsack. By exploiting
the geometry of the non-convex feasible region of the CC-
KAP in the variance-mean plane, we showed that CC-
KAP can be solved optimally by solving a sequence of de-
terministic knapsack problems (called risk-averse knapsack
problem). We demonstrated empirically that our algorithm is
quite efficient in practice. Future work includes theoretical
complexity bounds of our algorithm.
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