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Abstract— In this paper, we design provably-good algorithms
for task allocation in multi-robot systems in the presence of
payoff uncertainty. We consider a group of robots that has to
perform a given set of tasks where each robot performs at
most one task. The payoffs of the robots doing the tasks are
assumed to be Gaussian random variables with known mean
and variances. The total payoff of the robots is a sum of the
individual payoffs of all the robots. The goal is to find an
assignment with maximum payoff that can be achieved with
a specified probability irrespective of the realization of the
random variable. This problem can be formulated as a chance
constrained combinatorial optimization problem. We develop a
novel deterministic technique to solve this chance constrained
optimization problem that ensures that the chance constraints
are always satisfied. Adopting the notion of risk-aversion from
the economics literature, we formulate a risk-averse task allo-
cation problem, which is a deterministic integer optimization
problem. We prove that by repeatedly solving the risk-averse
task allocation problem using a one-dimensional search on the
risk aversion parameter we find a solution for the chance
constrained optimization formulation of the linear assignment
problem with uncertain payoffs. We provide simulation results
on randomly generated data to demonstrate our approach and
also compare our method to existing approaches.

I. INTRODUCTION

Multi-robot task assignment is a fundamental problem that

arises in a wide variety of application scenarios like manu-

facturing, automated transport of goods, environmental mon-

itoring, and surveillance [1], [2]. Task allocation problems

are mathematically modeled as combinatorial optimization

problems. The basic version of the task allocation problem

(also known as linear assignment problem in combinatorial

optimization) is: Given a set of agents (or robots) and a set of
tasks, with each robot obtaining some payoff (or incurring
some cost) for each task, find a one-to-one assignment of
agents to tasks so that the overall payoff of all the agents
is maximized (or cost incurred is minimized). The basic

task assignment problem can be solved (near) optimally in

polynomial time by centralized algorithms [3], [4] and de-

centralized algorithms [5]. Much of the research in linear as-

signment problems has assumed known payoffs (exceptions

include [6], [7]). In applications, the payoffs of the robots

for tasks may not be known exactly and for deployment

one may want to have algorithms for linear assignment with

performance guarantees in spite of the uncertain payoffs. The

goal of this paper is to develop algorithms with performance
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guarantees for linear assignment problems with uncertain

payoffs.
We consider a set of robots R = {ri}, i = 1, . . . , nr, and

a set of tasks T = {tj}, j = 1, . . . , nt. The payoff for a

robot ri for task tj is a Gaussian random variable aij . Each

robot can do at most one task1. In task allocation problems

with uncertain payoffs, one would like to have an assignment

with some guarantees on the quality of assignment (i.e.,

payoff achievable in the assignment) irrespective of the

realization of the random payoffs. Technically, there are

different objectives that can be used for the assignment

problem depending on the model of uncertainty used for the

payoffs. Two typical models of uncertainty are set theoretic

models and probabilistic models. Set theoretic uncertainty

models for linear assignment has been considered in [7]. In

a set theoretic model of uncertainty, the uncertain payoffs

are assumed to lie within some range of a minimum and

maximum value and the objective is to maximize the worst-

case payoff. In other words, the solution obtained maximizes

the total payoff for the worst possible realization of the

individual payoffs. Thus, this solution may be overly con-

servative when the realization of the worst case is a very

low probability event.
For probabilistic models of uncertainty, two popular ob-

jectives are the expected payoff and the chance-constrained

payoff [8]. Although the expected payoff maximization is a

quite popular objective for decision making problems under

uncertainty, the solution obtained is meaningful only in situ-

ations where the same problem has to be executed multiple

times by the robot team and one is interested in the average

performance of the team over the multiple scenarios. For

any particular realization of payoffs the solution may be far

off from the predicted solution. Consequently, the objective

does not provide any guarantees for any particular scenario.

Another objective is to have a probabilistic guarantee on

the quality of assignment for any given scenario by using

a chance constraint formulation, which is what we pursue

in this paper. Our goal is to compute an assignment of

robots to tasks such that: Given a p, find an assignment
that ensures that with probability p, we can obtain the
maximum achievable payoff under any realization of the
random variable. When p = 1, we have a problem with

worst-case guarantees. The above task allocation problem

can be formulated as a chance-constrained combinatorial

optimization problem.
Chance constrained optimization problems are a class of

1Note that the problem where we have to minimize the cost of an assign-
ment is identical and therefore we will talk about the payoff maximization
problem here.
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stochastic optimization problem [9], [10]. They are usually

hard to solve (except for some special cases like linear

optimization [9], minimum spanning tree [11]). In [12] the

authors have presented algorithms for chance-constrained

shortest path problems. In [13], the method of [12] has

been extended to a class of chance constrained optimization

problems, where the objective function is quasi-convex.

The chance constrained linear assignment problem that we

consider is a special case of the problem considered in [13].

The key aspect of [13] is to note that the chance constrained

problem (also known as the value-at-risk formulation) is

equivalent to the mean-risk formulation (where the objective

function is a sum of the mean and a constant times the

standard deviation). It is known [9] that the mean-risk

problem is quasi-concave and the objective function depends

on only the means and the variances of the feasible solutions.

Thus, finding the optimal solution to the mean-risk problem

reduces to finding the optimal solution to the mean-risk

problem over the projection of the feasible points in the

mean-variance plane. The authors then go on to provide an

exact solution where all extreme points in the mean-variance

plane are enumerated. This enumeration is actually done

by solving a risk-averse problem for various values of the

risk-aversion parameter, although the connection to the risk-

averse problem formulation is implicit in the paper.

Our overall approach to solve the value-at-risk formulation

of linear assignment builds on the work by [13]. We make

the relationship between the risk averse problem and the

value-at-risk problem explicit. Based on this insight, we

obtain an upper bound on the risk-aversion parameter (λ̃)

such that solving a finite number of deterministic risk-averse

problems with values of risk-aversion parameter below λ̃ is

guaranteed to provide us the optimal solution for the value-

at-risk problem. We present a methodical one-dimensional

search method on the risk-aversion parameter and show

through simulations on random data sets that our method is

much more efficient than the exact method proposed in [13].

The connection between the value-at-risk problem and the

risk-averse problem for linear assignment as well as the

deterministic method to solve the value-at-risk problem that

we present here are the primary contributions of this paper.

A. Other Related Work

Task allocation is important in many applications of multi-

robot systems, e.g., multi-robot routing [14], multi-robot

decision making [15], and other multi-robot coordination

problems (see [2], [16]). There are different variations of the

multi-robot assignment problem that have been studied in the

literature depending on the assumptions about the tasks and

the robots (see [1], [2], [17] for surveys), and there also exists

multi-robot task allocation systems (e.g., Traderbot [18],

[19], Hoplites [20], MURDOCH [21], ALLIANCE [22]) that

build on different algorithms. However, chance constrained

problems have been studied in multi-robot task allocation in

only a handful of papers.

In [8], [23] the authors model the multi-robot routing

problem as a chance constrained optimization problem. The

payoffs are also time-sensitive in that the payoff of visiting

a target site reduces with time. Hence all tasks need not

be done by the robots. The relationship between the chance

constrained and risk-averse problem has not been identified

or explored in [8], [23]. In [24], the authors have extended

the work in [12] to develop faster algorithms for stochastic

shortest path problems.

II. FORMULATIONS OF LINEAR ASSIGNMENT PROBLEM

UNDER PAYOFF UNCERTAINTY

In this section we will describe the chance constrained

optimization formulation for the linear assignment problem

(LAP). We will first present the basic formulation of the

linear assignment problem and then introduce the chance

constrained version. Suppose that there are nr robots, R =
{r1, . . . , rnr}, and there are nt tasks, T = {t1, . . . , tnt}.

Let the payoff of robot ri for performing tasks tj be aij . Let

J = {j1, j2, . . . , jnr} be the index set of the tasks in which

each element is the index of task assigned to a robot. For

example, if robot ri is assigned to tasks tu, then ji = u. We

assume that any robot can be assigned to any task. If a robot

cannot be assigned to a task we can model it by making the

corresponding payoff as −∞. Furthermore, we assume that

performing each task needs a single robot and the number of

tasks is same with the number of robots, i.e., nr = nt = n.

In LAP, the goal is to assign robots to tasks such that the

overall robot team payoff is maximized. Let fij be a binary

variable such that fij = 1 if robot ri is assigned to task tj
and 0 otherwise. The integer programming (IP) formulation

of LAP is

max

nr∑
i=1

nt∑
j=1

aijfij

s.t.

nr∑
i=1

fij = 1, ∀j,
nt∑
j=1

fij = 1, ∀i, fij ∈ {0, 1}

(1)

The first set of constraints imply that each task can be done

by exactly one robot. The second set of constraints encode

the fact that each robot can perform exactly one task. We

will call the constraints in the LAP as the linear assignment
constraints.

This is a typical LAP problem which is a classical problem

in operations research and combinatorial optimization and

there are many polynomial time algorithms that can solve

LAP optimally. In LAP it is usually assumed that the task

payoffs, aij , are known. If the task payoffs are not known

exactly but a distribution of the task payoffs is known, then

the problem formulation in Equation (1) (more precisely, the

objective function) has to be modified. The objective function

can be (a) expected value of the total payoff over the random

variables (b) robust total payoff (c) chance constrained payoff

and (d) risk-averse payoff. We discuss the chance constrained

and risk averse formulations below.

A. Chance Constrained Linear Assignment Problem
The chance constrained linear assignment problem (CC-

LAP) allows one to obtain a solution with a probabilistic
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guarantee in situations where the payoffs are uncertain. The

CC-LAP can be formulated as an integer program with

probabilistic (or chance) constraints.

max y

s.t. P

⎛
⎝ nr∑

i=1

nt∑
j=1

aijfij > y

⎞
⎠ ≥ p

nr∑
i=1

fij = 1, ∀j,
nt∑
j=1

fij = 1, ∀i, fij ∈ {0, 1}

(2)

where p is a given parameter. The first constraint ensures

that irrespective of the realization of the random variable,

aij , the total payoff obtained is always greater than y with

a probability of p with 0.5 ≤ p ≤ 1. This constraint

is the chance constraint of the optimization problem. For

example, if we choose p = 0.95, it implies that the solution

to Equation (2) gives a task assignment with the maximum

payoff y that ensures that no matter what, the overall payoff

will be always greater than y in 95% of the scenarios. The

chance constrained problem formulation is also known as the

value-at-risk problem formulation. A feasible solution to the

CC-LAP has to satisfy both the chance constraints and the

linear assignment constraints.

Solving a chance constrained integer optimization problem

is in general quite hard and usually Monte Carlo simulations

are used to satisfy the chance constraint. Another method to

formulate and solve decision making problems under uncer-

tainty is to use the notion of a risk-averse solution. We will

present the risk-averse task allocation problem formulation

for LAP in the next section and show the connection between

the risk-averse problem and the chance constrained problem.

Then we will present a deterministic algorithm that will

allow us to solve the chance constrained problem by solving

multiple instances of the risk-averse optimization problem.

Note that the risk-averse optimization formulation can be

interesting in its own right. Although RA-LAP cannot give

a priori guarantee on the quality of the solution it can give

a posteriori guarantee. In other words, given a value of the

risk aversion parameter, after solving the problem we can

determine the probability that the obtained solution will be

the best solution for any realization of the payoffs.

B. Risk Averse Linear Assignment Problem

Assume that the payoffs of a robot, ri for the tasks, tj
are drawn from a joint Gaussian distribution. Let μij be the

expected payoff for robot ri performing task tj , i.e., E[aij ] =
μij . Similarly, let σ2

ij be the variance of the payoff, i.e.,

V ar(aij) = σ2
ij .

For any assignment that satisfies the linear assignment

constraints, let ji ∈ J be the index of the task assigned

to robot ri. The payoff for robot i, denoted by Pi is then

aiji and the total payoff of the robot team is

P =

nr∑
i=1

Pi =

nr∑
i=1

aiji =

nr∑
i=1

nt∑
j=1

aij (3)

We define a utility function, U , for the robot team as

U = −e−λP = −e−λ
∑nr

i=1 aiji (4)

where λ > 0 is the index of risk-aversion for the robot team

(in economics, this is known as the Arrow-Pratt index of

absolute risk aversion). The higher the value of λ the more

risk averse the robot. The utility function U has the following

properties: (1) It is non-positive with its value equal to zero

for any feasible assignment if λ = 0. (2) For any given λ,

the utility U is a monotonically increasing function of the

total payoff P . Since aij is a stochastic variable, instead of

maximizing the total payoff of assignment, one may want to

maximize the total expected utility of the assignment. Note

that the total payoff P is a Gaussian random variable since

Pi = aiji is a Gaussian random variable. Furthermore, for

any feasible assignment, two robots will not be assigned

to the same task. Thus Pi are statistically independent.

Therefore, for any feasible assignment, the total payoff P is

also a Gaussian random variable with mean μ =
∑nr

i=1 μiji

and variance σ2 =
∑nr

i=1 σ
2
iji

. Therefore, from [25]

E[U ] = −e−2λ(μ−λσ2) (5)

Thus, for any given λ, maximizing E[U ] is equivalent to

maximizing μ− λσ2. Now,

μ− λσ2 =

nr∑
i=1

nt∑
j=1

(μij − λσ2
ij)fij (6)

Thus we can formulate the risk-averse optimization for-

mulation for the linear assignment problem as follows:

max

nr∑
i=1

nt∑
j=1

(μij − λσ2
ij)fij

s.t.

nr∑
i=1

fij = 1, ∀j,
nt∑
j=1

fij = 1, ∀i, fij ∈ {0, 1}

(7)

where fij are the optimization variables. By solving the

risk-averse task assignment problem (RA-LAP) with a given

value of λ, we can obtain the optimal assignment J(λ)
and optimal objective function value Q(λ) =

∑nr

i=1 μiji −
λ
∑nr

i=1 σ
2
iji

. Further the mean and variance of total payoff

with the assignment J(λ) can be computed, i.e., μ =∑nr

i=1 μiji , σ
2 =

∑nr

i=1 σ
2
iji

. We will use the notations above

extensively in this paper.

The objective function in Equation (7) is also known as

the mean-variance payoff function for the robot team. The

mean-variance payoff function encodes the following:

1) The variance of the payoff distribution of an assign-

ment is a measure of risk for the assignment.

2) If there are two assignments with the same expected

payoff, the assignment with the lower variance is

preferred.

3) If there are two assignments with the same payoff

variance, the assignment with the higher expected

payoff is preferred.
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The two problem formulations that we have introduced for

taking into consideration stochasticity has complementary

strengths. The solution to the chance constrained problem

formulation ensures an a priori probabilistic guarantee of

the solution quality. However, it is difficult to solve. On the

other hand the risk averse formulation is easy to solve but

provides only an a posteriori guarantee on the solution qual-

ity depending on the value of the risk aversion parameter λ.

Therefore, in the next section we will discuss a relationship

between the solutions of the chance constrained and the risk

averse problem that will allow us to develop an algorithm

for solving the chance constrained problem by repeatedly

solving the risk-averse problems.

C. Connection between Chance Constrained and Risk-
Averse Formulations

In this section, we argue that (a) the solution of RA-LAP

for any value of λ can always give a feasible solution to

the chance constrained problem and (b) the optimal solution

of the CC-LAP is the optimal solution of the RA-LAP with

some value of λ. Therefore we can solve CC-LAP by solving

RA-LAP.

Consider the chance constraint in CC-LAP. For any as-

signment that satisfies the linear assignment constraints, the

total payoff, P =
∑nr

i=1

∑nt

j aijfij , is a Gaussain random

variable with mean μ and variance σ2. Therefore, the chance

constraint of CC-LAP can be equivalently written as:

P(P > y) = 1− 1

2

(
1 + erf

(
y − μ√

2σ

))
(8)

where erf(·) is the error function. Let g(y) = P(P > y).

∴ g(y) =
1

2

(
1− erf

(
y − μ√

2σ

))
� p (9)

⇒ y � μ− [
√
2erf−1(2p− 1)]σ (10)

Let C =
√
2erf−1(2p − 1), which is a constant when the

required probability p is given. Therefore, any assignment

that satisfies the linear assignment constraints is also a

feasible solution to CC-LAP with maximum value of

y = μ − Cσ. Thus solving CC-LAP is equivalent to

finding the assignment (that satisfies the linear assignment

constraints) with maximum value of μ − Cσ. The optimal

solution to RA-LAP for any value of the risk aversion

parameter λ satisfies the linear assignment constraints.

Therefore, it is true that any optimal assignment for the

RA-LAP is feasible for the CC-LAP where the objective

y = μ− Cσ, where μ and σ2 are the mean and variance of

the total payoff of the optimal assignment.

We now argue that the optimal assignment for the CC-

LAP is an optimal assignment to the RA-LAP for some

value of the risk-averse parameter λ. Note that each feasible

assignment i to CC-LAP (Equation (2)) has a mean μi,

variance σ2
i , and a yi. Thus with each assignment, we can

associate a point in a two dimensional plane with coordinates

(σ2
i , μi). Figure 1 shows a schematic sketch of the variance-

mean plane with circles indicating the different feasible

assignments. We first note that the optimal solution to the

CC-LAP will be an extreme point of this point set in the

σ2-μ plane [12], [26]. Furthermore, the objective function of

the RA-LAP is a line in the σ2-μ plane with the risk-aversion

parameter, λ, as the slope. Therefore, the optimal solution for

the RA-LAP for any value of λ is an extreme point of the

point set. Thus, we can conclude that the optimal solution

for CC-LAP will be the optimal solution for RA-LAP for

some value of λ.

The above two facts motivate our solution approach of

performing a one-dimensional search on the risk aversion

parameter, λ, to find the risk aversion parameter (say λ∗)
corresponding to the optimal solution of CC-LAP. Our

Algorithm 1 bounds the possible values of λ∗, i.e., λ∗ ∈
[0, λ̃]. Notice that λ̃ gives a lower bound of the optimal

objective value of CC-LAP. This fact is discussed in Section

III. The Algorithm 2 searches for all the extreme points

by solving RA-LAP with λ within this range. Compared

with the method in [12], where the range of λ is [0,∞],
we limit the search set for λ, which makes our algorithm

more efficient (please see Section IV for the computational

comparisons).

Fig. 1. Projection of feasible assignments on σ2-μ plane

III. ALGORITHM FOR SOLVING TASK ALLOCATION WITH

CHANCE CONSTRAINTS

In this section we present our algorithm for solving the

chance constrained optimization problem. Before presenting

our algorithm, we first provide a few basic facts about the

solution of RA-LAP and establish the relationship between

the CC-LAP and the RA-LAP.

Lemma 1: The optimal objective function value for RA-

LAP is a strictly monotonically decreasing function of the

risk aversion parameter, i.e., μ1−λ1σ
2
1 > μ2−λ2σ

2
2 for any

λ2 > λ1, where μ1 and σ2
1 are the mean and variance of

the total payoff with the optimal assignment obtained from
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RA-LAP with λ1. The same way of notation is applied for

μ2 and σ2
2 .

Proof: Let λ1 and λ2 be two different risk aversion

parameters, and λ1 < λ2. μ1 and σ2
1 are the mean and

variance of total payoff that maximize the objective function

of RA-LAP
∑nr

i=1

∑nt

j=1(μij − λσ2
ij)fij . Therefore

μ1 − λ1σ
2
1 > μ2 − λ1σ

2
2

Since λ2 > λ1

μ2 − λ1σ
2
2 > μ2 − λ2σ

2
2

From inequalities above, we conclude

μ1 − λ1σ
2
1 > μ2 − λ2σ

2
2

Lemma 2: The variance of total payoff with the assign-

ment obtained from RA-LAP is a monotonically decreasing

function of risk aversion parameter, i.e., σ2
1 > σ2

2 for any

λ1 < λ2.

Proof: Since μ2 and σ2
2 are optimal for the RA-LAP

with λ2, it is true that

μ1 − λ2σ
2
1 < μ2 − λ2σ

2
2 (11)

Similarly,

μ1 − λ1σ
2
1 > μ2 − λ1σ

2
2 (12)

Subtracting Equation (12) from Equation (11), we obtain

(λ1 − λ2)σ
2
1 < (λ1 − λ2)σ

2
2

Since λ1 < λ2, we have

σ2
1 > σ2

2

Lemma 3: There exists a risk aversion parameter, denoted

by λ̃, such that the optimal objective function value of RA-

LAP with λ̃ is equal to the objective value of CC-LAP,

i.e., y = μ̃ − Cσ̃ = μ̃ − λ̃σ̃2. This objective value gives

a lower bound for the optimal objective value of CC-LAP.

Furthermore, the value of the risk-aversion parameter, λ∗,
that gives the optimal assignment for CC-LAP must lie in

the interval [0, λ̃.

Proof: First we need to prove that λ̃ exists. As is men-

tioned in Lemma 1, μ− λσ2 is a monotonically decreasing

function of λ. It is possible that the optimal assignment of

RA-LAP remains same even though λ changes. But μ−λσ2

still decreases. Therefore the optimal objective function value

of RA-LAP will always decrease as long as λ increases. For

CC-LAP, the objective value μ−Cσ changes only when the

optimal assignment of RA-LAP changes. Since the feasible

assignment of RA-LAP is finite, there exists one risk aversion

parameter, denoted by λm, such that the optimal assignment

of RA-LAP with λ > λm is same with the assignment of RA-

LAP with λm. Then μ−Cσ remains the same while μ−λσ2

keeps decreasing. Therefore the risk aversion parameter that

satisfies the equation μ − Cσ = μ − λσ2 exists. Notice

that there are possibly multiple values for such λ, but our

algorithm provides the smallest one. We will justify this

claim in the other part of this paper.

Now we need to prove that the objective values of CC-

LAP obtained outside the range [0, λ̃] are smaller than the

objective value obtained at λ̃, i.e., μ̃−Cσ̃ > μ−Cσ for any

λ > λ̃. If this is true, then we can conclude that λ̃ gives a

lower bound of optimal objective value of CC-LAP and the

risk aversion parameter λ∗ that gives the optimal assignment

must lie in the range [0, λ̃]. Suppose μ and σ2 are obtained

by solving RA-LAP with λ > λ̃, there are two different

cases:

• λσ � C. Obviously y = μ − Cσ � μ − λσ2. And

because λ > λ̃, from Lemma 1 we know that μ−λσ2 <
μ̃− λ̃σ̃2 = μ̃− Cσ̃. Therefore μ̃− Cσ̃ > μ− Cσ.

• λσ > C. Let λ′ = C/σ and λ′ < λ. Since λ > λ̃, from

Lemma 2 we know σ < σ̃ and further λ′ > λ̃. Therefore

μ−Cσ = μ−λ′σ2 < μ′−λ′σ′2 < μ̃− λ̃σ̃2 = μ̃−Cσ̃.

The analysis shows that the μ̃ − Cσ̃ is the lower bound

of optimal objective value for CC-LAP. And since the risk

aversion parameter is a positive number, λ∗ that gives the

optimal assignment must be in range [0, λ̃].
From the lemma above, we design the Algorithm 1 that

can efficiently find λ̃. The inputs of this algorithm are the

required probability p, mean μij and variance σ2
ij of each

task. The outputs are the set of risk aversion parameters

which includes both 0 and λ̃ that gives the lower bound

of optimal objective value of CC-LAP and the assignment

set includes the optimal assignment of RA-LAP with risk

aversion parameter 0 and λ̃. Line 1 computes the constant

C related to chance constraint. Line 2 solves the RA-LAP

with λ = 0. The while loop of line 3-6 computes the risk

aversion parameter, solves RA-LAP with this parameter and

checks whether λσ = C. If λσ 	= C, line 4 computes

the risk aversion parameter in the next while iteration. The

while loop keeps running unless the condition is true. Line

7 forms the risk aversion parameter set and assignment set.

The Algorithm 1 allows us to have following claim.

Claim 1: Algorithm 1 finds the smallest risk aversion

parameter λ such that μ− Cσ = μ− λσ2.

Proof: Suppose the risk aversion parameter is λi ∈
[0, λ̃], μi and σ2

i are obtained from RA-LAP with λi. If

λiσi < C, the risk aversion parameter in the next step can

be obtained by the method introduced in Algorithm 1, i.e.,

λi+1 = C
σi

. It is true for any λ ∈ [λi, λi+1) that

λσ < λi+1σ � λi+1σi = C

Also σi+1 < σi, therefore

λi+1σi+1 < λi+1σi = C

Algorithm 1 essentially proceeds in a way that i change from

0 to some value of k (λk = λ̃). This implies that for any

λ ∈ [0, λ̃), μ − λσ2 > μ − Cσ. So we can conclude that

Algorithm 1 finds the smallest λ such that λσ = C.

After finding λ̃ which gives the lower bound of optimal

objective value of CC-LAP, we need to search for the optimal

assignment in the range [0, λ̃]. More precisely we need to
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search for extreme points on σ2-μ plane, as is shown in

Figure 1.

Lemma 4: For two different risk aversion parameters,

λi > λj and the corresponding RA-LAP have different

optimal assignments J(λi) 	= J(λj), there exists a risk

aversion parameter λ̄ ∈ (λi, λj) such that if J(λ̄) = J(λi)
or J(λ̄) = J(λj), then the optimal assignment for RA-LAP

with λ ∈ (λi, λ̄) is same with the optimal assignment at

λi, i.e., J(λ) = J(λi) and similarly J(λ) = J(λj) for any

λ ∈ (λ̄, λj).

Proof: Since μi−λiσ
2
i , μj −λjσ

2
j are optimal for RA-

LAP at λi, λj respectively, we have μi − λiσ
2
i > μj − λiσ

2
j

and μi − λjσ
2
i < μj − λjσ

2
j . Consider μi, μj , σ

2
i , σ

2
j as

constants, then f(λ) = μi − λσ2
i and s(λ) = μj − λσ2

j

are linear functions. Imagine f(λ) and s(λ) as two line

segments between λi and λj . Because f(λi) > s(λj) and

f(λj) < s(λj), there must exist an intersection between λi

and λj , where f(λ) = s(λ). The value of λ at the intersection

is defined as λ̄ which is equal to
μi−μj

σ2
i−σ2

j
.

Now we define another function h(λ) = μk −λσ2
k, where

μi, σ
2
k are obtained from any feasible assignment of RA-LAP

with λ ∈ (λi, λj) and we consider μk, σ
2
k as constants in this

function. Therefore h(λ) is a linear function. Because μi −
λiσ

2
i , μ̄− λ̄σ̄2 are optimal for RA-LAP at λi, λ̄ respectively,

h(λi) < f(λi) and h(λ̄) < μ̄− λ̄σ̄2. If J(λ̄) = J(λi), then

f(λ̄) = μi−λ̄σ2
i = μ̄−λ̄σ̄2. Therefore f(λ̄) > h(λ̄). Further

since both f(λ) and h(λ) are linear, f(λ) > h(λ) for any

λ ∈ (λi, λ̄). This is true for any feasible solution of RA-

LAP with λ ∈ (λi, λ̄). This implies that J(λi) is the optimal

assignment of RA-LAP over the range (λi, λ̄). It similar to

prove that the J(λj) is the optimal assignment of RA-LAP

over the range (λ̄, λj). We can further conclude that λ̄ is

the risk aversion parameter where the optimal assignment

of RA-LAP changes. In other words, (σ̄2, μ̄) is an extreme

point on σ2-μ plane of Figure 1.

Using Lemma 4, we design Algorithm 2, which searches

for the optimal assignment of CC-LAP within the range

obtained by Algorithm 1. The inputs of this algorithm are

the range of risk aversion parameter λ = {0, λ̃} and the

corresponding assignments J = {J(0), J(λ̃)}. The outputs

are optimal assignment of CC-LAP J∗ and optimal objective

value y∗. Line 2 compute the current number of intervals,

denoted by l. The for loop of line 3-12 does the same

procedure discussed in Lemma 4 for l number of intervals.

Line 4 computes λ̄k for each interval. Line 5 solves RA-

LAP with λ̄k and then obtains the optimal assignment J̄k
and objective value ȳk of CC-LAP with this assignment. Line

6 verifies whether J̄k is same with the assignments at two

endpoints of current interval, i.e., Jk,i, Jk,j . If it is true, that

means we find an extreme point at λ̄k. Since there is no other

extreme points in this interval, line 8 removes risk aversion

parameters and the corresponding assignments from the set

that is used for the next step. If it is false, there might be

other extreme points between the current interval. So line

10 put the risk aversion parameter λ̄k, assignment J(λ̄k)
and objective value ȳk into the active set. The for loop does

the computation in this way for all intervals in the set. For

the interval that J(λ̄) is different with two assignment at

endpoints, there are two small intervals generated from it in

the next while iteration, i.e., [λk,i, λ̄k] and [λ̄k, λk,j ]. The

while loop keeps running until the set of active assignment

J is empty. Line 14 finds the optimal objective value y∗ of

CC-LAP and the optimal assignment J∗.
Figure 1 illustrates our procedure. Point 1 and point 2 are

the projection of optimal assignments of RA-LAP at λ1 and

λ2 on σ2-μ plane. Then we can compute λ̄ = μ1−μ2

σ2
1−σ2

1
, which

is the slope of line passing through point 1 and point 2. Next

the RA-LAP with λ̄ is solved and the projection of the J(λ̄)
is point 3. If J(λ) is different with assignment at point 1

and point 2, then we compute the slope of line connecting

point 1 and point 3 and the slope of line connecting point

3 and point 2, i.e., λ̄1 = μ1−μ̄
σ2
1−σ̄2 and λ̄2 = μ̄−μ2

σ̄2−σ2
2

. Then we

solve the RA-LAP with λ̄1 and λ̄2. If the assignment is same

with assignment at any of two endpoints of the interval, e.g.,

J(λ̄) = J(λ1), then the projection of J(λ̄) has the same

position with J(λ1) on the plane. Therefore point 1 is an

extreme point and there is no other extreme point between

point 1 and point 2. Then Algorithm 2 stops searching for

optimal assignment between λ1 and λ2. Finally all extreme

points in the triangle with red edges would be found.

Algorithm 1 Find the range

Input: p, μij , σij∀i, j = 1, 2, . . . n.

Output: λ, J .

1: Compute C =
√
2erf−1(2p− 1)

2: λ = 0, solve risk-averse problem, obtain the assignment

J0 and μ0, σ0

3: while λσ 	= C do
4: compute λ = C

σ
5: solve RA-LAP with λ, obtain J, μ, σ
6: end while
7: λ̃ = λ and J̃ = J
8: J = {J0, J̃}, λ = {0, λ̃}

IV. SIMULATION RESULTS

In Section III, we provided algorithms for computing a

lower bound of the CC-LAP (Algorithm 1) and computing

the optimal solution of CC-LAP (Algorithm 2). Since the

CC-LAP is an instance of the class of problems considered

in [13], the exact algorithm in [13] can also be used to

solve the CC-LAP. The common aspect of all of the above

algorithms is that it solves multiple instances of the RA-LAP

to compute a solution for the CC-LAP. Therefore, a good

measure of the efficiency of the algorithms is the number

of RA-LAP problems that are solved. For the lower bound,

we also need to compute the closeness of the solution to

the optimal solution. In this section we use the above two

metrics to compare the performance of the solution obtained

using λ = λ̃ from Algorithm 1, λ = λ∗ from Algorithm 2

and the solution of [13]. We use randomly generated data

sets to compare the different algorithms.
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Algorithm 2 Search for the optimal solution within the

interval
Input: λ, J
Output: J∗, y∗.

1: while J 	= ∅ and λ 	= ∅ do
2: Compute the number of intervals s
3: for k = 1 : l do
4: compute λ̄k =

μk,i−μk,j

σ2
k,i−σ2

k,j

5: solve RA-LAP, obtain J̄k and ȳk
6: if J̄k ∈ {Jk,i, Jk,j} then
7: Remove interval k
8: J = J \ {Jk,i, Jk,j}, λ = λ \ {λk,i, λk,j}
9: else

10: J = J ∪ J̄k, λ = λ ∪ λ̄k, Y = Y ∪ ȳk
11: end if
12: end for
13: end while
14: y∗ = {y|y > y′, ∀y′ ∈ Y } and J∗ is corresponding

assignment.
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Fig. 2. Comparison between our algorithm and Nikolova’s algorithm
regarding the number of calls to risk-averse problem

Recall that the payoff of robot ri for performing task tj
is aij , which is a Gaussian random variable, i.e., aij ∼
N (μij , σ

2
ij). For each problem, the mean and variance of

payoffs are generated according to a uniform distribution in

(0, 100) and (0, 20) respectively. We use our algorithm to

solve a large number of stochastic linear assignment prob-

lems with increasing size from 5 to 100 with increment of 1.

The problem with a given number of robots/tasks is solved

for 100 times and the average number of calls to risk-averse

problem is computed. We also use the method from [13]

to do the same procedure. Figure 2 gives the comparison

between our procedure for computing the optimal solution

and the method from [13]. The number of calls to the risk-

averse problem increases for both algorithms linearly with

the number of robots/tasks. However, the rate of growth

for our algorithm is much smaller compared to [13]. For

number of robots and tasks n
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Fig. 3. Comparison between our algorithm that outputs exact solution
and the algorithm that merely outputs approximate solution regarding the
number of calls to risk-averse problem
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Fig. 4. The error of approximate solution

example, for 100 robots, our algorithm solves about 11 RA-

LAP problems, whereas the algorithm in [13] solves about

190 RA-LAP.

Figure 3 and 4 compares the number of calls to RA-LAP

and the difference between the objective values for our lower

bound and the optimal solution. As we can see from Figure 3,

for computing the lower bound, the number of calls to RA-

LAP is relatively constant (about 3 on average), whereas

the number of calls to RA-LAP, although small, increases

linearly. Furthermore, from Figure 4 the percentage differ-

ence between the two solutions is very small (of the order of

1e−04). This seems to suggest that in practical situations, the

lower bound that we are obtaining may be good enough. The

reason of the good approximation is currently unclear and

a subject of ongoing investigations. In fact, the question of

whether the lower bound that we compute has any theoretical

approximation guarantee is unknown.
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V. CONCLUSION

In this paper, we presented provably-good algorithms for

task allocation in multi-robot systems with payoff uncer-

tainty. We formulated a chance constrained linear assignment

problem and developed a novel deterministic technique to

solve this chance constrained problem. Adopting the notion

of risk-aversion from the economics literature, we formulate

a risk-averse task allocation problem. We prove that by re-

peatedly solving the risk-averse task allocation problem using

a one-dimensional search on the risk aversion parameter we

find a solution for the chance constrained optimization prob-

lem. We provide simulation results on randomly generated

data to demonstrate our approach and also compare our

method to existing approaches. Although we demonstrated

empirically that our algorithm is quite efficient, in the

future, we would like to have a theoretical analysis of the

computational complexity of our algorithm. In particular, we

want to obtain a theoretical bound on the number of calls to

the risk-averse problem for our algorithm. Furthermore, we

want to explore the application of the relationship between

the value-at-risk and risk-averse problem, to other variations

of task allocation problems.
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