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Abstract— Motivated by applications in multirobot team
selection, in this paper, we present a novel algorithm for
computing optimal solution of chance-constrained 0-1 knap-
sack problem. In this variation of the knapsack problem,
the objective function is deterministic but the weights of the
items are stochastic and therefore the knapsack constraint
is stochastic. We convert the chance-constrained knapsack
problem to a two-dimensional discrete optimization problem
on the variance-mean plane, where each point on the plane
can be identified with an assignment of items to the knapsack.
By exploiting the geometry of the non-convex feasible region
of the chance-constrained knapsack problem in the variance-
mean plane, we present a novel deterministic technique to
find an optimal solution by solving a sequence of deterministic
knapsack problems (called risk-averse knapsack problem). We
apply our algorithm to a multirobot team selection problem to
cover a given route, where the length of the route is much larger
than the length each individual robot can fly and the length that
an individual robot can fly is a random variable (with known
mean and variance). We present simulation results on randomly
generated data to demonstrate that our approach is scalable
with both the number of robots and increasing uncertainty of
the distance an individual robot can travel.

I. INTRODUCTION

The knapsack problem is a fundamental problem in

combinatorial optimization that has multiple applications in

task allocation and team formation in multi-robot systems,

especially when we consider limited battery life of the

robots. In this paper, we consider multirobot team forma-

tion problems, where robots with limited battery life (and

therefore a constraint on the distance they can travel) have

to cover together a given distance in the course of their

task execution. The distance the robots have to cover is

assumed to be much larger than the distance an individual

robot can cover. Furthermore, the distance a robot can cover

is a stochastic variable since it may depend on variables that

are unknown at the team formation time. Such situations arise

quite naturally in many applications including point-to-point

material transfer, patrolling, and persistent surveillance.

For example, consider a perimeter patrolling application

(see Figure 1) by a team of quadrotors, in which the robots

with limited battery life have to move along a route of given

length (possibly multiple times). The total distance that has

to be covered is much larger than the distance an individual

robot can fly. Furthermore, the distance an individual robot
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Fig. 1. Figure shows a patrolling route for perimeter surveillance with a
team of quadrotors. The goal is to compute the number of robots in the
team so that the operating cost of patrolling (or number of robots in the
team) is minimized.

can travel is uncertain because it depends on uncertain envi-

ronmental variables (like wind speed for unmanned aerial

vehicles). Thus, the distance a robot can travel can vary

from one run of the robot to the next depending on the

environmental conditions. There is operating cost for each

robot. The total cost of covering the route is a sum of

individual costs of robots. Our goal is to select a team of

robots of minimum size or minimum total operating cost

from a group of heterogeneous robots that covers the route

with high probability (specified a priori), irrespective of the

realization of the random distance that a robot can travel.

Such a solution has the advantage that the selected team

would be able to perform the patrolling task despite high

variability in the environmental conditions.

The deterministic version of our problem where the travel

distances are known constants can be formulated as a 0-

1 knapsack problem. The classical 0-1 knapsack problem

can be stated as follows: Given a set of items, each with
a weight and a value, determine the items to include in a
knapsack so that the total weight is less than or equal to
the weight carrying capacity of the knapsack and the total
value is as large as possible [7]. To see the correspondence

of our problem to the knapsack problem, note that the

total length to be traveled by the robots corresponds to

the capacity of the knapsack and the weights of the items

correspond to the distance an individual robot can fly. At

first glance, the deterministic version of our problem seems

to be different from the classical knapsack problem since

we are minimizing the total cost. However, the knapsack

problem we are considering is equivalent to the classical

0-1 maximization knapsack problem. In fact, we can think
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of the minimization problem as the following maximization

problem: find a subset of robots such that the total cost of

unchosen robots is maximized and the total travel length of

the robots is less than the total length of all robots in the

given set minus the length of the given route. Therefore

the algorithms that solve classical 0-1 knapsack problem

can also be used to solve the deterministic version of our

problem. There are many methods to solve the knapsack

problem such as dynamic programming [21], branch and

bound method [12] and other methods that combine both

dynamic programming and branch and bound [16], [10],

[11]. Although solving knapsack problem is NP-hard, there

is a fully polynomial time approximation scheme [21].

Contributions: In this paper, we present a novel algorithm

that solves 0-1 knapsack problem with chance constraint.

In [4], the authors consider a stochastic knapsack problem

similar to our setting and provide a polynomial time approxi-

mation scheme (PTAS) by using a parametric linear program.

However, we present a more efficient method, where we

solve the chance constrained problem by repeatedly solv-

ing a deterministic knapsack problem called the risk-averse

knapsack problem. By analyzing the feasible region of both

chance constrained and risk averse knapsack problems on

variance-mean plane, we prove that there exists a risk-averse

knapsack problem such that the optimal solution of chance

constrained knapsack problem is also the optimal solution of

risk-averse knapsack problem. We use this insight to develop

an iterative algorithm where we solve the chance constrained

problem by repeatedly solving a sequence of risk-averse

knapsack problem. The key aspect of our algorithm is that

we maintain a probabilistic guarantee irrespective of the real-

ization of the random variables (the lengths the robots could

move). We present simulation results on randomly generated

data which show that our algorithm works efficiently.

II. RELATED WORK

Chance constrained optimization problems are a class of

stochastic optimization problem [19], [3]. They are usually

hard to solve (except for some special cases like linear

optimization [19], minimum spanning tree [6]). Chance-

constrained shortest path problems have been studied in [15]

and the algorithm has been extended to a class of chance con-

strained optimization problems, where the objective function

is quasi-convex [14]. In our previous work [22], we presented

an algorithm for solving the chance-constrained linear as-

signment problem. In [22], we demonstrate the connection

between chance constrained problem and risk-averse linear

assignment problem and show that the optimal solution is

obtained by using a one-dimensional search on risk-averse

parameter. Within the robotics literature on task allocation

or team formation, problems with stochastic constraints have

been studied in [17], [18], [13].

There are different stochastic variations of the classical 0-1

knapsack problem that have been studied in the extant litera-

ture. In [1], [5], [20], the authors have studied the stochastic

knapsack problem with deterministic weights and random

costs whereas in our problem we have deterministic costs and

random weights. In [2], the authors compute a solution policy

that optimize the expected total values. Optimizing expected

values provide no performance guarantees on a particular

realization of the random variables. We want to develop

methods that ensures the constraints are satisfied with a

high probability irrespective of the realization of the random

weights. An algorithm is designed to obtain good solutions

to the chance-constrained problem in [8], by running a

sequence of robust problems. The algorithm provides an

optimal solution when the costs are identical or the uncertain

weights present all the same characteristic. In this paper,

our method computes the optimal solution in more general

situation. In [4], the authors consider a stochastic knapsack

problem similar to our setting and provide a polynomial time

approximation scheme (PTAS) by using a parametric linear

programming reformulation. Our solution to the chance-

constrained problem is based on a geometric interpretation of

the problem on variance-mean plane. Our method finds the

optimal solution of chance-constrained problem by solving

a sequence of a deterministic knapsack problems called the

risk-averse knapsack problems.

III. CHANCE CONSTRAINED KNAPSACK PROBLEM

Let L be the length of the closed curve (or a route) that

a team of robots have to cover. We have a collection of

heterogeneous robots that have different battery life and they

can fly for different lengths. Let �i be the distance that

robot i can fly. Each robot has a different operating and

maintenance cost denoted by ci. The variable �i is assumed

to be a Gaussian random variable with mean μi and variance

σ2
i , i.e., �i ∼ N (μi, σ

2
i ), i = 1, ..., n. Our goal is to find a

set of robots from the collection of n robots that can cover

the total length L with probability p (where 0 ≤ p ≤ 1)

while minimizing the total cost. Let fi be an integer variable

that takes the value 1 if robot i is part of the team and 0
otherwise. The integer program formulation of our problem

is as follows:

min

n∑
i=1

cifi

s.t. P

(
n∑

i=1

�ifi ≥ L

)
≥ p

fi ∈ {0, 1}, ∀i = 1, . . . , n

(1)

The formulation above is a stochastic variation of the min-

imization version of 0-1 knapsack problem, which we call

the chance constrained knapsack problem (CC-KAP). In the

deterministic knapsack problem, the probabilistic constraint

in (1) constraint is replaced by the deterministic constraint∑n
i=1 �ifi ≥ L. The minimization version of the knapsack

(which we are generalizing with the stochastic constraint)

is equivalent to the maximization version [21]. Intuitively,

minimizing the cost of robots in the team is equivalent to

maximizing the cost of robots that are not chosen in the team.

Note that if we set the costs to be identical (say 1), we find

the robot team with minimum number of robots such that the

route is covered by the team with high probability, despite
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the uncertainty in the length that each robot can fly. The

formulation in (1) cannot be solved easily and we reformulate

it by rewriting the chance constraints in an equivalent form.

Lemma 1: The CC-KAP problem in (1) with a given

probability p is equivalent to the following formulation

min
n∑

i=1

cifi

s.t.

n∑
i=1

μifi − C

√√√√ n∑
i=1

σ2
i fi ≥ L

fi ∈ {0, 1}, ∀i = 1, . . . , n

(2)

where C = Φ−1(p) with Φ representing the cumulative

distribution function (cdf) of a standard normal distribution

with zero mean and unit variance.

Proof: In the first constraint of formulation (1),∑n
i=1 �ifi is a random variable that is distributed normally

with mean
∑n

i=1 μifi and variance
∑n

i=1 σ
2
i fi. Standardiz-

ing this normally distributed random variable, we have

P

(
n∑

i=1

�ifi ≥ L

)
≥ p

=⇒ P

(∑n
i=1 �ifi −

∑n
i=1 μifi√∑n

i=1 σ
2
i fi

≥ L−∑n
i=1 μifi√∑n

i=1 σ
2
i fi

)
≥ p

Now the left hand side of the inequality in the bracket is a

random variable with standard normal distribution. Therefore

1− Φ

(
L−∑n

i=1 μifi√∑n
i=1 σ

2
i fi

)
≥ p

Since Φ(−x) = 1− Φ(x). Therefore

Φ

(∑n
i=1 μifi − L√∑n

i=1 σ
2
i fi

)
≥ p

=⇒
(∑n

i=1 μifi − L√∑n
i=1 σ

2
i fi

)
≥ Φ−1(p)

n∑
i=1

μifi − Φ−1 (p)

√√√√ n∑
i=1

σ2
i fi ≥ L

Let C = Φ−1 (p). Thus, we obtain the first constraint in

Equation (2),

n∑
i=1

μifi − C

√√√√ n∑
i=1

σ2
i fi ≥ L.

If we relax fi, the problem in (2) is a second order cone

program with integrality gap Ω(
√
n) [4]. In [4], the authors

converted the problem in Equation (2) to a parametric linear

program and presented an algorithm that for ε > 0 gives a

1 − 3ε approximate solution with running time O
(

1
ε2n

1
ε

)
.

We present an alternate parametric formulation, where dif-

ferent choices of the parameter leads to different knapsack

problems. In the discussion below we will refer to both (1)

and (2) as chance constrained knapsack problem (CC-KAP),

which is a chance constrained integer optimization problem

and is hard to solve in general. In this paper, instead of

solving CC-KAP directly, we show that the solution to CC-

KAP can be obtained by solving a number of deterministic

knapsack problems (given below), which we call risk-averse

knapsack problem (RA-KAP)

min
n∑

i=1

cifi

s.t.

n∑
i=1

μifi − λ

n∑
i=1

σ2
i fi ≥ L′

fi ∈ {0, 1}, ∀i = 1, . . . , n

(3)

Here λ is the risk-averse parameter that performs a weighted

combination of the mean and variance of the travel lengths

of each robot. The parameter L′ is the constraint for the total

length in RA-KAP. Consider the situation when λ = 0 and

L′ = L, the problem becomes the classical 0-1 knapsack

problem. Our solution strategy is to iteratively search over λ
and L′ to find the appropriate λ and L′ such that the solution

to the RA-KAP gives a solution to the CC-KAP. We justify

this in the next section.

IV. GEOMETRIC INTERPRETATION

In this section, we present a geometric interpretation of the

CC-KAP on the variance-mean plane in which the horizontal

axis is the variance and the vertical axis is the mean (see

Figure 2). The CC-KAP is an integer optimization problem in

which any solution is a vector of binary decision variables fi.
Given any particular solution s = [f1, ..., fn], we can identify

this solution with a point on the variance-mean plane. The

y-coordinate of this point is the sum of means for all travel

distance of robots chosen in the solution,
∑n

i μifi, and the x-

coordinate is the sum of variances,
∑n

i σ
2
i fi. The coordinate

of this point related to solution s is denoted by (σ2(s), μ(s)).
Thus the space of all possible robot teams can be identified

with points in the variance-mean plane (however, we do not

construct this explicitly because the number of such points

will be exponential in the number of robots). Moreover, we

can find the feasible region of solution for the CC-KAP

based on the chance constraint in Formulation 2. As shown in

Figure 2, the feasible region for CC-KAP is the space above

the parabola in the first quadrant on variance-mean plane.

Since the constraint in the RA-KAP is a linear inequality of

σ2 and μ, the feasible region for RA-KAP is the space above

the line whose slope is equal to risk-averse parameter λ and

y-intercept is equal to the length of the route L′. Based on

this geometric viewpoint, we present the following lemmas:

Lemma 2: The optimal solution of RA-KAP that satisfies

the chance constraint provides an upper bound of optimal

solution of CC-KAP.

Proof: Since the optimal solution of RA-KAP satisfies

the chance constraint, the corresponding point on variance-

mean plane must be in the intersection of feasible regions of
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Fig. 2. The geometric interpretation of chance-constrained knapsack
problem. Any solution is related to a point on variance-mean plane. The
feasible region for CC-KAP is the space above the parabola while the
feasible region for RA-KAP with given λ and L is the space above the
line whose slope is equal to λ and y-intercept is equal to L.

CC-KAP and RA-KAP. If the optimal solution of CC-KAP

is in this intersection, then the optimal objective function

value of CC-KAP and RA-KAP are same. If the optimal

solution of CC-KAP is not in the intersection, it implies that

the optimal objective value of RA-KAP is greater than the

optimal objective value of CC-KAP. Therefore the optimal

objective function value of RA-KAP must be greater than or

equal to the optimal objective function value of CC-KAP.

Lemma 3: If the constraint of RA-KAP is tangent to the

parabola of chance constraint, the optimal solution of this

particular RA-KAP must be a feasible solution of CC-KAP.

Proof: When the linear constraint of RA-KAP is

tangent to the parabola, the feasible region of RA-KAP is

the subset of feasible region of CC-KAP. Therefore points

related to all feasible solutions including the optimal solution

of RA-KAP are in the feasible region of CC-KAP.

Lemma 4: There exists a RA-KAP such that the optimal

solution of CC-KAP is also the optimal solution of the RA-

KAP.

Proof: As it is stated in the proof of Lemma 3, the

feasible region of RA-KAP in which the constraint is tangent

to the parabola is a subset of feasible region of CC-KAP.

There always exists a tangent to the parabola (i.e., a pair

(λ̄, L̄′)), such that the half-space defined by this pair contains

the point corresponding to the optimal solution of CC-KAP

(say s∗). Thus s∗ is also the optimal solution of RA-KAP.

In fact the lemma also works for the RA-KAP in which

the constraint is not tangent to the parabola. For example,

if we move the previous tangent by rotating and translating,

the optimal solution of RA-KAP may still be the optimal

solution of CC-KAP.

Lemma 4 implies that the key to solving the CC-KAP

is to solve the RA-KAP with particular slope λ̄ and y-

intercept L̄′ whose optimal solution satisfies the chance

constraint. However Lemma 2 tells that solving the RA-KAP

for a particular choice of λ and L′ does not mean we have

obtained the optimal solution, probably upper bound instead.

Therefore we need to design a method to iterate over different

values of λ and L′ methodically so as to cover the whole

area of the feasible region of CC-KAP. The optimal solution

would be the solution with the smallest total cost among

those upper bounds. Our algorithm provides a systematic

approach to perform this search.

V. ALGORITHM

In this section, we present our algorithm to solve the CC-

KAP. The input for our Algorithm 1 is the length of the

route, L, the confidence-level that the robots should finish

the tour of the route, p, the mean (μi) and variance (σ2
i )

of travel distance for each robot. The algorithm outputs the

robot team that can complete the route following task with

probability p and minimum total cost.

Algorithm 1 Algorithm to solve CC-KAP

Input: L, p, μi, σ2
i ∀i = 1, . . . , n.

Output: v∗, s∗ = {f1, . . . , fn}.
1: Set k = 1, λk = 0, Lk = L.

2: Solve RA-KAP with λk and Lk. S← sk,V← vk.

3: while the optimal solution of RA-KAP sk does not

satisfy the chance constraint do
4: let k = k + 1, λk = C/σk−1 where C = Φ−1(p).
5: Solve RA-KAP with λk and Lk. S ← sk ∪ S, V ←

vk ∪ V.

6: end while
7: Compute point a and point b on the parabola.

8: Compute λ̂ab, L̂ab by connecting point a and point b.
Λ← λ̂ab, L← L̂ab.

9: while Λ �= ∅ do
10: for i = 1 to |Λ| do
11: Solve RA-KAP with λ̂i and L̂i.

12: if ŝi does not satisfy the chance constraint then
13: Compute λ̂i,1, λ̂i,2, L̂i,1, L̂i,2.

14: Λ′ ← λ̂i,1∪λ̂i,2∪Λ′ and L
′ ← L̂i,1∪L̂i,2∪L′.

15: else
16: S← ŝi ∪ S, V← v̂i ∪ V

17: end if
18: end for
19: Λ← Λ′, L← L

′ and Λ′,L′ ← ∅.
20: end while
21: v∗ = maxvi∈V vi, s∗ = maxvi∈V si

In Algorithm 1, first, we compute a feasible solution of

CC-KAP which gives a upper bound of the optimal solution

by Lemma 2 (lines 1 to 6). We begin with solving RA-KAP

for λ equal to 0. If the optimal solution of RA-KAP does

not satisfy the chance constraint (e.g., point s1 in Figure 2),

we update λ using λ = C/σ where C = Φ−1(p) and σ =√∑n
i=1 σ

2
i fi. Then, we solve RA-KAP with the updated λ

and store the corresponding optimal solution and objective

value in set S and V respectively. This procedure continues

until the optimal solution of RA-KAP satisfies the chance
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constraint (e.g., point s2 in Figure 2). Once we find a feasible

solution to CC-KAP, it implies that we have explored the

region that is the intersection of feasible region of CC-KAP

and the feasible region of RA-KAP which gives the first

feasible solution of CC-KAP. In practice, this region is a

large portion of feasible region of CC-KAP. We will discuss

this further in the next section.

Now we need to explore the rest of the feasible region of

CC-KAP. In line 7, we compute the intersection of parabola

of chance constraint and the line from the constraint of

the last RA-KAP, denoted by point a shown in Figure 2,

whose coordinates in variance-mean plane is (C
2

λ2 , L+ C2

L ).
Then the algorithm computes the point with the largest x-

coordinate on the parabola. The coordinate of this point is

(
∑n

i=1 σ
2
i , L+C

√∑n
i=1 σ

2
i ), denoted by point b. Note that

all solutions will be to the left of the vertical line passing

through point b. Thus, the region to be explored is bounded

by a triangle formed by constraint line passing through point

a, the line through both point a and point b (which are

constraint 4 and constraint 3, respectively, in Figure 2), and

the vertical line through point b. In line 8, we compute the

equation of line that goes through point a and point b. Let

λ̂ab equal to its slope, stored in set of risk-averse parameter

set Λ and the length of route L̂ab equal to its y-intercept,

stored in set L.

In lines 9 to 20, we explore the triangle described in the

previous paragraph (formed by constraint 3, constraint 4, and

the vertical line through point b). Note that the feasible region

of the RA-KAP with λ̂ab and L̂ab includes this triangle. In

line 11, we solve the RA-KAP with λ̂ab and L̂ab. If the

solution sab satisfy the chance constraint, in other words the

corresponding point of ŝab is within the enclosed region, the

whole area is explored. Therefore, we store the objective

value in V and store the solution in S (lines 12 to line 17).

Otherwise the solution is in the bow-shaped region between

parabola and line. We have to reduce this bow-shaped region

by inserting two line segments so that the solution will not

dominate over the solution in unexplored feasible region.

One endpoint of those line segments are point a and point

b respectively. Another endpoint is shared by both, which

is the intersection of parabola and the line going through

point a. The slope of this line segment is equal to ε plus

the slope of line connecting point a and point related to

solution sab, i.e., λ̂1,1 = ε+ μ̂ab−μa

σ̂2
ab−σ2

a
where (σ2

a, μa) is the

point a and (σ̂2
ab, , μ̂ab) is the point related to the solution

ŝab. Note that this point should be under the line segment

otherwise the solution of RA-KAP would turn out to be

same as sab. Also ε should be small enough so that the

intersection point is within the parabola from point a to

point b. After computing the endpoint, we simply compute

the slope of line segment going through point b and therefore

the y-intercepts of extension of both line segments can be

computed, denoted by L̂1,1, L̂1,2 respectively (shown in line

13). Store all computed slopes and y-intercepts in set Λ′

and set L̂′ respectively (shown in line 14). Update Λ̂ and L

(shown in line 19). Then solve RA-KAP with all λ̂i ∈ Λ̂

and L̂i ∈ L, and further determine if the solutions satisfy

the chance constraint. If yes, store the solution and objective

in S and V respectively. Otherwise update Λ̂ and L̂ and

solve RA-KAP with these updates. Repeat procedure until

Λ̂ = ∅ (shown in line 9). Now the optimal solutions of RA-

KAPs related to all line segments between point a and point

b satisfy the chance constraint. It means that the whole area

of the feasible region of CC-KAP is explored. Finally, in line

21, the algorithm finds the optimal objective function value

of CC-KAP by choosing the smallest value stored in V and

the optimal solution is the corresponding solution in S.

VI. SIMULATION RESULTS
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Fig. 3. For a given number of robots, the blue dots show the average
number of call to RA-KAPs for solving a CC-KAP. The red dots show the
maximum number of calls to RA-KAPs. Each dot is generated using 100
simulations with randomly generated mean and variance for travel distance
of each robot. The length of the route is 10, 000 meters and the number of
robots vary from 10 to 100.

In this section, we present simulation results to character-

ize the performance of our algorithm. The goal of the simu-

lation studies is to understand the scalability of our algorithm

as a function of the number of robots and the uncertainty in

knowledge about the distance the robots can travel (i.e., vari-

ance). Our algorithm solves the chance constrained knapsack

problem by solving a number of deterministic risk-averse

knapsack problems. Thus, the efficiency of our algorithm

depends on the number of deterministic knapsack problems

solved. To understand the effects of parameters such as the

number of robots and the variance of travel distance of

robots, we generated different scenarios based on randomly

generated parameter values. We will first present simulation

results in which the mean and variances of travel distance

of robots are randomly generated and the number of robots

is varied methodically. Then we will present the simulation

results in which the variances of travel distance are varied.

Our simulations were performed on Lenovo Y50 laptop with

Intel 2.60 GHz processor and 16.0 GB RAM.

In the first simulation, we test the effect of number of

robots on the number of RA-KAPs to be solved which in
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number of RA-KAPs called for solving CC-KAP, as the variance of the
travel distance is changed from 100 to 22500. Each dot is obtained from
100 simulations with randomly generated mean travel distance of each robot.
The number of robots is 100 and the length of the route is 50, 000 meters.

turn determines the algorithm performance. We use dynamic

programming to solve the RA-KAP optimally in pseudo-

polynomial time, O(n2P ), where n is the number of robots

and P is the largest cost among all robots [21]. As mentioned

in Section III, the travel distance of each robot is Gaussian

random variable. The means and variances of these random

variables are generated independently from a uniform distri-

bution μi ∼ U(1000, 3000) and σ2
i ∼ U(10000, 12500). The

total length that the robots have to traverse as a team, L,

is 10, 000 meters. The probability that the robots cover the

route is 0.99. In other words, the total distance the chosen

robots can cover is greater than 10, 000 with probability

0.99, despite the actual realization of their travel length in

The variance of travel distance ×104
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Fig. 6. The blue dots show the average and the red dots the maximum
running times (second) for solving CC-KAP as the variance of the travel
distance is changed from 100 to 22500. Each dot is obtained from 100
simulations with randomly generated mean travel distance of each robot.
The number of robots is 100 and the length of the route is 50, 000 meters.

any given scenario. Moreover the operation and maintenance

cost for each robot is drawn uniformly from 50 to 150, i.e.,

ci ∼ U(50, 150). We set ε = 1×10−7. We count the number

of RA-KAPs for solving CC-KAP when number of robots is

equal to 10, 11, . . . , 100. For each case with a given number

of robots, we generate the means and variances randomly for

100 times.

Figure 3 and Figure 4 show the performance of our

algorithm with the different number of robots. In Figure 3,

the blue dots represent the average number of RA-KAPs to

solve CC-KAP with given number of robots while the red

dots represent the maximum number of calls to RA-KAPs.

Each dot is generated with the results from 100 simulations.

As it is shown, the average numbers of RA-KAP solved is

almost constant (between 2.5 to 3) irrespective of the number

of robots. In Figure 4, the maximum numbers of RA-KAPs

solved are between 3 and 7, which is a small value for

practical applications. The results reveal that the number of

robots does not have a significant influence on the speed

of our algorithm and the number of calls to RA-KAPs is

nearly a constant. Another way to measure the speed of our

algorithm is the actual running time. As shown in Figure 4,

the maximum running time is less than 0.3 seconds and both

the average and maximum numbers increase polynomially

with respect to the number of robots. This is because the

algorithm used to solve deterministic RA-KAP is a O(n2P )
algorithm while the number of calls RA-KAPs is nearly a

constant.

In the second simulation, we study the effect of the un-

certainty of travel distance of the robots on the performance

of our algorithm by counting the number of calls to RA-

KAPs and the actual running time for our algorithm solving

CC-KAP with variance equal to 100, 324, 548, . . . , 22500.

For each value of variance, we generate mean of travel

distance of robots randomly, by sampling from the uniform
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distribution, U(1000, 3000). For each value of variance, we

denote 100 different scenarios. The number of robots is

100 and the length of the route is 50, 000 meters for all

scenarios in this simulation. The other parameters such as

the cost, ci, the probability in the chance constraint, p, and

ε are same as that in the first simulation. Figure 5 shows

that the average number of calls (blue dots) to RA-KAPs

is practically constant as the variance of travel distance

increases. The maximum numbers of calls (red dots) range

from 3 to 7. Figure 6 shows that the average running time

is about 0.15 seconds and the maximum running times are

less than 0.45 seconds. This is because the increased variance

does not increase the computational burden for the algorithm

solving the deterministic RA-KAP and the number of calls

is constant. Figure 5 and Figure 6 implies that our algorithm

scales well when the uncertainty of travel distances of robots

are high.

VII. CONCLUSION

In this paper, we presented an algorithm for computing

optimal solutions for chance-constrained knapsack problems

with deterministic objective and stochastic knapsack con-

straint. The key idea in our approach is to convert CC-

KAP to a deterministic discrete optimization problem on the

variance-mean plane, where each point on the plane can be

identified with an assignment of items to the knapsack. By

exploiting the geometry of the non-convex feasible set of

the CC-KAP in the variance-mean plane, we showed that

CC-KAP can be solved optimally by solving a sequence of

deterministic risk-averse knapsack problems. We presented

an algorithm to systematically generate the sequences of RA-

KAPs to solve the CC-KAP.

Our problem formulation is motivated by team selection

problems in multirobot systems, where robots have limited

battery life, under uncertain knowledge about their durability

in the mission. We presented simulation results on randomly

generated data to show empirically that the number of RA-

KAPs required to solve the CC-KAP is a small constant

(less than 7), irrespective of the number of robots or the

uncertainty in the knowledge about the distance that a robot

can travel. Thus, our algorithm scales well with the number

of robots from which we can choose the team and also with

the variance of the battery life, i.e., the distance that a robot

can travel.

Although, empirically, our algorithm seems to be compu-

tationally efficient, we do not have any theoretical guarantees

about the computational complexity of our algorithm. In

future work, we will work on analyzing the computational

complexity of our algorithm. We also intend to extend our

method to solve the stochastic versions of the multiple

knapsack problem and the generalized assignment problem.

These problems arise in task allocation problems for multiple

robots that have limited battery life [9].
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