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Abstract— We present a novel algorithm for simultaneous
task assignment and path planning on a graph (or roadmap)
with stochastic edge costs. In this problem, the initially unas-
signed robots and tasks are located at known positions in a
roadmap. We want to assign a unique task to each robot
and compute a path for the robot to go to its assigned task
location. Given the means and variances of travel cost of each
edge, our goal is to develop algorithms that guarantee that
the total path cost of the robot team is below a minimum
value in any realization of the stochastic travel costs with high
probability. We formulate the problem as a chance-constrained
simultaneous task assignment and path planning problem (CC-
STAP). We prove that the optimal solution of CC-STAP can be
obtained by solving a sequence of deterministic simultaneous
task assignment and path planning problem in which the travel
cost is a linear combination of mean and variance of the edge
cost. We show that the deterministic problem can be solved
in two steps. In the first step, robots compute the shortest
paths to the task locations and in the second step, the robots
solve a linear assignment problem with the costs obtained in
the first step. We also propose a distributed algorithm that
solves CC-STAP near-optimally. We present simulation results
on randomly generated networks and data to demonstrate that
our algorithm is scalable with the number of robots (or tasks)
and the size of the network.

I. INTRODUCTION

Multirobot task allocation problems where robots have to
move to target destinations arises in a number of applications
including search and rescue, and goods or parts transfer in
warehouses. In such scenarios, the robots have to navigate in
environments containing both static and dynamic obstacles.
There are two related problems to be solved, namely, (a)
multirobot task allocation problems, wherein robots have to
be assigned to a destination and (b) multirobot path planning
problems wherein collision-free paths have to be planned
for each robot between their origin and destination. The two
problems are usually decoupled. In task allocation problems,
it is commonly assumed that the cost of the paths between
robot-destination pairs are known, which implicitly implies
that a single collision-free path has been pre-computed be-
tween each robot-destination pair. In path planning problems
the origin and destination of each robot is usually given,
which implicitly implies that the task assignment for each
robot has been computed.

Further, for task allocation, the path costs are usually
assumed to be deterministic. However, the path costs may
be stochastic, especially in open environments, where other
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(uncontrolled) mobile agents like people or other cars can
occupy the space. To avoid collisions, robots may have
to slow down or deviate locally from their planned paths,
thus making travel costs (like time or energy consumed)
stochastic. The decoupling of the task allocation and path
planning problems, although conceptually convenient can
lead to sub-optimal solutions. Therefore, in this paper, we
consider robot task allocation problems where the robots
have to simultaneously plan paths and select target desti-
nations (or tasks) under uncertainty about the travel costs.

We assume that the robots move on a graph. The graph
may represent an actual road network or a roadmap which
captures the collision-free configuration space of the robots.
It is assumed that robots have local collision avoidance
schemes to avoid mobile obstacles. There are many algo-
rithms like PRM [5] or RRT [7] or their optimal variants
PRM* and RRT* [4] that can generate the roadmaps for
any given environment. We assume that the cost on each
edge of the graph is a random variable with known mean
and variance. Thus the total path cost of the robot team is a
random variable. Our goal is to simultaneously compute the
assignment of tasks (targets) to robots as well as paths to
reach the tasks and a minimum value (say y) of the team
performance objective such that we have a guarantee that
the robot team performance will be less than y with high
probability (say 0.95) under any realization of the random
costs. Such a solution will provide a quality guarantee
(albeit probabilistic) on the solution of the simultaneous task
assignment and planning (STAP) problem in the presence of
uncertainty about the task execution costs.

We model the stochastic STAP problem as a chance
constrained combinatorial optimization problem and call the
problem chance-constrained simultaneous task assignment
and planning (CC-STAP) problem. We prove that the op-
timal solution of CC-STAP can be obtained by solving a
sequence of deterministic simultaneous task assignment and
path planning problem (D-STAP) in which the travel cost
on each edge is a linear combination of mean and variance
of the edge cost. We show that the D-STAP problem can be
solved by following steps: computing the shortest paths to the
task locations and solving a linear assignment problem with
the shortest path costs. The algorithms to solve CC-STAP
optimally and also the algorithm to solve D-STAP optimally
are the primary contributions of this work. We also present
a distributed algorithm to solve CC-STAP that builds on the
auction algorithm for solving linear assignment problems [1],
[25].

To the best of our knowledge, there are no available



algorithms with theoretical guarantees on solution quality
that can solve our version of the combined task assignment
and planning problem with stochastic costs. In previous
work [24], we have solved a version of the CC-STAP prob-
lem, where the team objective is to minimize the maximum
cost for a robot team. The chance-constrained problem is
solved by solving a linear bottleneck assignment problem
and a number of chance-constrained shortest path problems.
In this paper, the team objective is to minimize the total
costs of the robot team. In the extant literature, there are
centralized algorithms such as the Hungarian algorithm [6],
distributed algorithms with shared memory [1] and totally
distributed algorithms [25] solving deterministic task assign-
ment problem. In [13], the authors solve a task allocation
problem under uncertainty for analyzing the sensitivity of
the optimal assignment with respect to the uncertainty in
payoffs. In [20], a redundant robot assignment on graphs with
uncertain edge costs is studied. There has been some effort
in solving different variations of the stochastic shortest path
problem [2], [3], [8], [10], [11], [12], [15], [16], [18], [19],
in which one robot has to plan its motion to a destination
node, with random costs on the edges. In [9], the authors
considered a stochastic path planning problem for one robot
that has to visit a set of nodes in a predefined sequences.
Our problem involves not only path planning but also the
task assignment which is not predefined. In the deterministic
setting combined goal assignment and collision-free trajec-
tory planning problem has been studied in [21], [22], [17].
The distinction of these papers from our problem is that we
consider stochastic costs and our planning is on a discrete
structure instead of continuous space.

II. PROBLEM FORMULATION

Given a graph G = (V,E), a set of Nr heterogeneous
robots ri, a set of Nt tasks ti with known initial positions, the
travelling cost icuv incurred when the robot ri goes through
any edge euv . It is assumed that icuv is random variable with
known mean iµuv and variance iσ2

uv . The goal is to compute
the path for each robot to a unique target such that the total
path cost of robot team is less than a value y with probability
at least p. Our objective is to minimize the value y.

min y

s.t. P

 Nr∑
i=1

|V |∑
u,v=1

icuv
ixuv ≤ y

 ≥ p
∑

v∈N (u)

ixuv −
∑

v∈N (u)

ixvu =

 1, if u = sri ,
−zij , if u = tj ,
0, otherwise

∀i

ixvu ∈ {0, 1}, ∀u, v ∈ V, i = 1, . . . , Nr.
Nr∑
i=1

zij = 1, ∀j;
Nt∑
j=1

zij = 1, ∀i; zij ∈ {0, 1} ∀i, j.

(1)

The solution of this problem includes two parts: assign-
ment indicated by decision variable {zij},∀i, j and path by

{ixuv},∀u, v ∈ V,∀i. In particular, zij = 1 when ri is
assigned to tj and ixuv = 1 when edge euv is an edge
of path for ri. The probabilistic guarantee on the perfor-
mance of robot team is ensured by the chance constraint
which guarantees that the total travel cost for all robots,∑Nr

i=1

∑|V |
u,v=1

icuv
ixuv , is at most the cost value y in any

realization of the random travel cost with probability at least
p. The second set of constraints is the path constraints for
every robot. In particular, for any robot ri the difference in
the number of the edges along the path leaving and entering
one node, say u, is equal to 1 when u is the source node
sri , equal to −zij when u is a node for any task, say tj , and
equal to 0 otherwise. More precisely for case when u = tj ,
the difference is equal to −1 when tj is the task assigned to
ri and is 0 when tj is not assigned to ri (u is an intermediate
point on the path or a point not on the path). The constraints
for zij ensure that each robot performs only one task and
each task is assigned to one robot.

The chance constraint can be written as inequality (2)
based on different assumptions on the probability distribution
of the travel cost. If the travel costs are independent Gaussian
random variables, i.e., icuv ∼ N (iµuv,

iσ2
uv), the total

path cost for the robot team is thus a Gaussian random
variable with mean and variance equal to the sum of means
and variances of the edge along the paths. By standardized
total travel cost, the following equivalent constraint can be
obtained:

Nr∑
i=1

|V |∑
u,v=1

iµuv
ixuv + C

√√√√ Nr∑
i=1

|V |∑
u,v=1

iσ2
uv

ixuv ≤ y (2)

where c = Φ−1(p) and Φ−1(·) denotes the inverse cumula-
tive distribution function of N (0, 1).

Note that the independent and distribution assumption are
for clarification and brevity of the mathematical exposition.
It can be generalized to more realistic scenarios where only
means and variances of travel costs are available while the
distribution information is absent. In particular, by Cheby-
shevs inequality solving problem with C =

√
p

1−p will
obtain a feasible solution that satisfies the chance constraint.
Further with appropriate graph transformation, our method
could be extended to the case where the travel costs are
dependent. An graph transformation example was provided
in [14].

For limited space, we use F to denote the feasible space
of all constraints for ixuv and zij except chance constraint
in (1). Let y equal to the left-hand side of (2). The formu-
lation in (1) can thus be equivalently written as

min

Nr∑
i=1

|V |∑
u,v=1

iµuv
ixuv + C

√√√√ Nr∑
i=1

|V |∑
u,v=1

iσ2
uv

ixuv

s.t. ixvu, zij ∈ F ,∀i, u, v

(3)

The problem above is a non-liner integer program which is
difficult to solve in general.
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Fig. 1. All feasible solutions of (3) and (4) are a set of points on variance-
mean plane. (a) The optimal objective function in (3) is the level curve
through a point with smallest vertical intercept. The optimal solution of (3)
is an extreme point which can be obtained by solving (4) with proper risk-
averse parameter, e.g., λ∗. (b) Our method finds the search region that allows
us obtain the optimal solution of (3) with smaller number of risk-averse
problems (4) solved than enumerating all extreme points on variance-mean
plane.

III. GEOMETRIC ANALYSIS

Based on our previous work [23], we consider the solution
in (1) and (3) as a point on a two-dimensional space called
variance-mean plane as Fig. 1. Recall that a feasible solution
is essentially a set of the paths. Each solution can be treated
as a point with horizontal and vertical coordinates equal to
the sum of the variances and means of random cost of edge
along the paths respectively, i.e.

∑Nr

i=1

∑|V |
u,v=1

iσ2
uv

ixuv

and
∑Nr

i=1

∑|V |
u,v=1

iµuv
ixuv . The level curve of the objec-

tive function in (3) is a parabola (Fig. 1 (a)). The objective
value of a solution is equal to the vertical intercept of the
level curve through the associated point of the solution.
Therefore the optimal solution of the chance-constrained
problem (3) is the point with the smallest vertical intercept of
the level curve through it. The optimal point can be computed
by solving a risk-averse problem given below.

min

Nr∑
i=1

|V |∑
u,v=1

(iµuv + λ iσ2
uv)

ixuv

s.t. ixvu, zij ∈ F ,∀i, u, v

(4)

This problem is a deterministic version of our problem
in (1) in which the edge costs are linear combination of
means and variances i.e., iµuv + λ iσ2

uv . λ is the risk-
averse parameter (also known as the Arrow-Pratt index of
absolute risk aversion in economics). The higher the value of
λ the more risk averse the robot. We need to simultaneously
compute the assignment of robots to tasks and plan the path
for robots to reach the tasks. The objective is to minimize
the total path cost of the robot team. The level curve of
the objective function in (4) is a straight line with the
slope equal to −λ as shown in Fig. 1. Since constraints
in (4) and (3) are same, all feasible solutions have same
coordinates on variance-mean plane. From a geometrical
point of view, solving the optimal solution is equivalent to
find the straight line through a feasible point with the lowest
vertical intercept. Hence there is no feasible point below the
straight line. Therefore a key observation is that the optimal
solution of (4) is an extreme point of the feasible point set
(An extreme point of a set of points by definition is the

point that there exists a straight line through it such that all
other points are on one side of the line.). The following
lemma demonstrates the relationship between risk-averse
problem (4) and chance-constrained problem (3).

Lemma 1: The optimal solution of problem (3) is the
optimal solution of (4) with proper value of λ.

Proof: As shown in Fig. 1 (a), the optimal solution
of (3) is the point passed by the parabola level curve with the
lowest vertical intercept. Therefore there is no feasible point
below the level curve. There always exists a straight line
through the optimal point such that there is also no feasible
point below it, such as the tangent of the parabola at this
point. Let λ equal to the negation of the slope. The optimal
solution of (4) is the optimal solution of (3).

Let λ∗ denote the risk-averse parameter such that the
optimal solution of (4) with λ = λ∗ is optimal to (3). We
present a method in Alg. 1 that finds the upper bound of λ∗.

IV. SOLUTION APPROACH

Although, we do not show explicitly, Lemma 1 implies
that the optimal solution of CC-STAP is an extreme point
of the feasible solution set. Thus, one way to compute the
optimal CC-STAP solution is to enumerate all extreme points
on variance-mean plane (this is shown as yellow dots in
Fig. 1 (a)). However the number of extreme points in the
worst case for this problem could be large.

We propose a novel two-step algorithm to solve CC-STAP:
(1) We first find a search region (shown in Fig. 1 (b))
for the extreme points within which the optimal solution
is guaranteed to lie, by computing an upper bound for λ∗.
(2) We then enumerate extreme points in this search region
by solving a sequence of risk-averse problems (4) with
methodically generated λ. As results shown in section VI,
the number of risk-averse problem solved by our method is
less than enumerating all extreme points.

Let µk and σ2
k denote the sum of the mean and vari-

ance of the edges along the path computed from risk-
averse problem (4) with λk respectively, i.e., µk =∑Nr

i=1

∑|V |
u,v=1

iµuv
ix∗uv , σ2

k =
∑Nr

i=1

∑|V |
u,v=1

iσ2
uv

ix∗uv .

Further let σk =
√∑Nr

i=1

∑|V |
u,v=1

iσ2
uv

ix∗uv . Therefore the
optimal solution of (4) is a point with coordinate (σ2

k, µk)
and the optimal objective function value for (4) is µk+λkσ

2
k.

The objective function value for (3) at this point is µk+Cσk.
We will provide two observations from our previous

work [23] that solve chance-constrained linear assignment
problem in which each solution is also treated as a point
and the level curve of objective is also parabola though the
distribution of feasible points are different because of differ-
ent constraints. The observations are still valid in this paper.
Let λk < λk+1 be two different risk-averse parameters, then:

1) µk + λkσ
2
k < µk+1 + λk+1σ

2
k+1

2) σk
2 ≥ σ2

k+1

Based on the above, there is a key lemma used to design
the first step of our algorithm.

Lemma 2: Let λ̄ be a risk-averse parameter, such that the
optimal objective function value of (4) with λ̄ is equal to



the objective value of (3) at the same solution, i.e., µ̄ +
Cσ̄ = µ̄ + λ̄σ̄2. This objective value gives an upper bound
for the optimal objective value of (3). The optimal risk-averse
parameter λ∗ must lie in the interval [0, λ̄].

Proof: Let µ and σ2 are obtained from the optimal
solution of (4) with λ > λ̄. We need to prove that the
objective values of (3) at the solution obtained from the
optimal solution of (4) with λ are greater than the objective
value obtained at λ̄, i.e., µ̄+ Cσ̄ < µ+ Cσ for any λ > λ̄.

There are two different cases:

• λσ ≤ C. Obviously µ + Cσ ≥ µ + λσ2. And because
λ > λ̄, from observation 1 we know that µ + λσ2 >
µ̄+ λ̄σ̄2 = µ̄+ Cσ̄. Therefore µ̄+ Cσ̄ < µ+ Cσ.

• λσ > C. Let λ′ = C/σ. Thus, λ′ < λ. Since λ > λ̄,
from observation 2 we know σ < σ̄. Thus, C

σ > C
σ̄ ,

which implies λ′ > λ̄. Therefore, µ+Cσ = µ+λ′σ2 ≥
µ′ + λ′σ′2 > µ̄+ λ̄σ̄2 = µ̄+ Cσ̄.

Thus, µ̄+Cσ̄ is the upper bound of optimal objective value
for chance-constrained problem (3). Since the optimal risk-
averse parameter, λ∗ is a positive number, λ∗ must be in the
range [0, λ̄].

Once λ̄ is computed, we can obtain a triangular search
region shown in Fig. 1 (b). We will prove that λ̄ always exists
and can be found in finite number of steps in Lemma 3.

V. ALGORITHM

We will present our distributed algorithm comprised of
three components: the first step of our algorithm that finds
λ̄ and a search region in Alg. 1, the distributed algorithm
solving risk-averse problem (4) in Alg. 2 used as a subroutine
for two-step algorithm, and the second step of our algorithm
that enumerates the extreme points in the search region.

Initial Knowledge of the Robots: We assume that each
robot, ri, only knows the pre-specified probability p (hence
C), and graph structure G with the means and variances of
its own cost for travelling any edges euv , i.e., iµuv and iσ2

uv .

A. Searching for the bound

Alg. 1 is the procedures for any robot ri that compute λ̄
in the first step of our algorithm. At any iteration k (line 1 or
line 6), ri solves risk-averse problem (4) with λk (initially
λ0 = 0). Let αi denote the index of the task assigned to
ri. We obtain the assigned task tαi

, the path to the assigned
task iΠk = {ix∗uv} and the variance of path cost, i.e., σ2

k =∑Nr

i=1

∑|V |
u,v=1

iσ2
uv

ix∗uv . Thus ri can compute σk =
√
σ2
k

(line 2 or line 7). Then ri determines whether λk is the upper
bound λ̄ by the condition λkσk = C (line 3, from lemma 2).
If no, the risk-averse parameter is updated as λk+1 = C

σk

(line 4). Then ri moves on to the next iteration (line 4-7).
The procedure repeats until the condition is satisfied. Now
λk is equal to upper bound λ̄. Finally ri return the path to the
assigned task iΠ̄ obtained from risk-averse parameter with
λ̄.

Lemma 3: The Alg. 1 finds λ̄ and terminates in finite
number of iterations.

Algorithm 1 The distributed algorithm for robot ri searching
for the upper bound λ̄

1: Let k = 0, solve risk-averse problem with λk = 0.
2: Compute σk from the output.
3: while λkσk 6= C do
4: Update the risk-averse parameter by λk+1 = C

σk
.

5: k = k + 1.
6: Solve risk-averse problem with λk
7: Compute σk from the output.
8: return Path to assigned task iΠ̄.

Proof: In the first iteration λ0 = 0 and obviously
λ0σ0 < C and λ1 > λ0. In any iteration k before the termi-
nation, λkσk 6= C. In fact λkσk < C because λkσk−1 = C
by updating rule and σk < σk−1 by observation 2. Thus,
we have a strictly increasing sequence of values of λ,
namely, λ0 < λ1 < λ2 < · · · . Before termination, in each
iteration a new extreme point is found by solving risk-averse
problem (4) with λk. The algorithm terminates when the
obtained extreme point is same with the previous iteration.
There is some value of λ such that the risk-averse problem
with it produces the solution with minimum variance of path
cost. In the worst case, when λk is greater than that value, the
solution of risk-averse problem in the next iteration would
remain the same. Therefore λk+1σk+1 = λk+1σk = C. The
condition is satisfied. Since the number of iterations must be
less than or equal to the number of extreme points of the
solution set which is finite, the number of iteration should
be finite.

Note that if there are multiple risk-averse parameters
satisfying the condition λσ = C, our algorithm finds the
smallest one. The reason is that for all λ in the obtained
interval [0, λ̄), it is always true that µ+ Cσ > µ+ λσ2.

B. Risk-averse problem

The risk-averse problem in (4) is a deterministic STAP.
The edge costs are linear combination of means and variance,
i.e., iµuv+λ iσ2

uv . The goal is to assign each robot a unique
task and compute the path for robot to reach the assigned
task. The objective is to minimize the total path cost of the
robot team. The following lemma shows the idea of our
algorithm.

Lemma 4: The risk-averse problem in (4) can be solved
optimally by solving a (minimization) linear assignment
problem with assignment cost equal to the shortest path
cost to the task under graph with deterministic edge cost
iµuv + λ iσ2

uv .
Proof: Our first claim is that in the optimal solution

each path should be the shortest path from robot to task.
Because if any path is not the shortest path, we can always
obtain a better solution using the shortest path for the same
robot and task. Therefore we can use the shortest path costs
for all robot-task pairs as the assignment costs. Further
the optimal assignment of robots to tasks should provide
the minimum total path cost and satisfies the assignment
constraints for zij in F , which are the constraints for linear



assignment problem. Therefore the optimal assignment can
be computed by solving such linear assignment problem.

Therefore we can have a distributed algorithm without
shared memory for risk-averse problem by modifying the
auction algorithm in [25]. In any iteration k of Alg. 1, given
edge cost iµuv + λk

iσ2
uv , each robot, say ri computes

the shortest path cost to all tasks denoted by {`ij}Nt
j=1 by

Dijkstra. −`ij is used as the assignment cost in the auction
algorithm (because of minimization problem). ri should also
compute variance for the path in the original problem (1), i.e.,
vij =

∑|V |
u,v=1

iσ2
uv

ix∗uv where {ix∗uv} is the shortest path
obtained from Dijkstra algorithm. The input of our auction
algorithm for each robot ri is therefore {`ij , vij}Nt

j=1. The
local variable and message communicated among all robots
is {pij , bij , βij}Nt

j=1 where pij is the price that ri has to pay
in order to be assigned to tj , bij is the local knowledge of
index of the highest bidder for a task tj . βij is the additional
message used in our auction iteration, which indicates the
variance of the path to task tj in current auction iteration.

The single auction iteration of our algorithm is shown in
Alg. 2. For each task tj , robot ri determines the robot in the
neighborhood with the highest price, denoted by rd ∈ Ni,
based on the message obtained from Ni (line 3). If there
are multiple such robots, robot with greatest bhj (h ∈ Ni)
is identified as rd. Next ri updates the local variables by
copying the message from rd (line 4). After updating local
variables for all tasks, ri determines whether the updated
price of the current assigned task piαi increases or the price
does not change but the highest bidder of the task biαi

changes (line 5). If yes, ri should re-compute the assigned
task tαi

with the highest net value, i.e., −`ij − pij based on
the updated prices (line 6). Let qi and wi denote the highest
and second highest net value for ri. Then the price of the
updated assigned task tαi

is increased by γi = qi − wi + ε
where ε is to prevent the cycle in the auction (line 7).
Now in its neighborhood, ri provides the highest price for
the assigned task tαi

. Therefore the highest bidder of the
assigned tasks biαi and the task variance βiαi are updated
to i and viαi respectively (line 8). Then ri sends updated
local variables to its neighbors (line 9). The auction iteration
continues until the local prices does not change for ∆
iterations where ∆ ≤ n − 1 is the maximum diameter
of the network. The local knowledge of the task prices
and task variances {pij , βij}Nt

j=1 is now equal to the global
information. Each robot ri outputs the its assigned task tαi

,
the path to the assigned task denoted by iΠk and the variance
of total path cost, σ2

k =
∑Nt

j=1 βij .

C. Enumerating extreme points within the search region

In this subsection, we provide an outline of the second
step of our algorithm. For this step, each robot needs to
know both the mean and the variance of the total path cost
obtained for a given λ, i.e., (σ2

k, µk). The additional variable
required for the second step is thus the mean of total path
cost. Therefore in the auction iteration, a variable indicating
the mean of the path to task should be used (similar to βij).

Algorithm 2 Auction iteration for robot ri
1: Extract message {phj , bhj , βhj}Nt

j=1 from neighbors, i.e.,
∀h ∈ Ni.

2: for each task tj do
3: Find the neighbor rd with the highest price for tj ,

i.e., d = arg maxh∈{i, Ni} phj .
4: Update local variables {pij , bij , βij} by pij = pdj ,

bij = bdj and βij = βdj .

5: if piαi increases or unchanged but biαi 6= i then
6: Update the assigned task tαi by αi =

arg max1≤j≤Nt
−`ij − pij .

7: Increase the price for the assigned task piαi by γi.
8: Update biαi = i and βiαi = viαi .
9: Send local variables {pij , bij , βij}Nt

j=1 to neighbors.
10: return αi, iΠk and σ2

k =
∑Nt

j=1 βij .

Let sk = (σ2
k, µk) denote the solution obtained in Alg. 1

for λk. After obtaining λ̄, each robot ri has a set of obtained
solution {s0, s1, ..., s̄}. Then ri compute a set of point
pairs, as {(s0, s1), (s1, s2), ...}. For each pair of solutions,
say (sa, sb), each robot ri computes the slope of the line
connecting both points and let a risk-averse parameter λc
equal to the negation, i.e., λc = −µa−µb

σ2
a−σ2

b
. Then ri solves

risk-averse problem with λc by auction algorithm. If the
output solution, say sc = (σ2

c , µc) is different from sa and
sb, then sc is a new extreme point and ri stores two pairs
of points (sa, sc) and (sc, sb) that are used for the next
iteration. When all pairs of points in the current iteration are
processed, ri moves on to the next iteration and computes λ
by same procedure to each pair of points generated from last
iteration. The procedure continues until no new extreme point
is obtained. The optimal solution is the one with smallest
objective value of problem (3).

Note that both Alg. 1 and the second step of our algorithm
discussed here includes two components: updating λk and
solving risk-averse problem. Since each robot can update λk
based on its own knowledge of (σ2

k, µk), our overall two-
step algorithm that solve CC-STAP in (1) is a distributed
algorithm.

VI. SIMULATION RESULTS

The computational cost for each robot is K(T1 + I · T2)
where K is the number of risk-averse problems (4) solved,
T1 = O(|E| + |V | log |V |) is the computational cost for
Dijkstra algorithm, I = O(∆N2

r d
maxi,j `ij−minij `ij

ε e) is the
number of auction iterations [25] and T2 is the computational
cost for single auction iteration. The value for K depends
on the number of extreme points on variance-mean plane.
However, this number is problem parameter dependent and
it is hard to give a priori bounds. In this section, we study the
values for K and KI with different number of robots and
the size of graph. We show through extensive simulations
that: (a) our algorithm is scalable to the number of robots
(tasks) and the size of the maps. (b) Our algorithm is more
efficient than enumerating all extreme points to obtain the



optimal solution. (c) Our distributed algorithm is efficient
and the solution is nearly optimal.

The simulations were done on computer with Intel i7
2.60GHZ CPU and 16G RAM. We assume the number
of robots is same with the number of tasks. The desired
probability p in chance constraint is 99% and ε of auction
iteration in Alg. 2 is 10. We create different instances with
randomly generated means and variance for edge cost, i.e.
iµuv,

i σ2
uv . The means are generated from a continuous

uniform distributions U(20, 100) and variances are generated
from continuous uniform distribution with different magni-
tude of the range so that the edge with higher mean also
tends to have a higher variance.

We compare three algorithms (shown in plot (a) of Fig. 2
and 3) : (1) Distributed algorithm presented in this paper
that implements the first step of our method. It produces
the approximate solution. The results are represented by red
line. (2) Centralized algorithm that implements our two-
step method. It solves CC-STAP optimally. The results are
represented by blue line. (3) Method that enumerates all
extreme points. The solution is optimal. The results are
shown by the black line. All methods solve CC-STAP by
solving a sequence of risk-averse problems. We evaluate
the performance by computing the number of risk-averse
problems solved, namely K the number of iterations. We
further evaluate the performance of our distributed algorithm
by computing the number of auction iterations taken by each
robot for solving CC-STAP, i.e., KI .

A. Scability to the number of robots

We study the scability of our algorithm to the number
of robot varying from 20 to 100 with 20 increment. Robots
are working on a graph with 500 nodes and 8470 edges. The
results are provided in Fig. 2. For a certain number of robots
(x coordinate) in plot (a), we compute the average number
of iterations taken by three methods from 100 instances
with randomly generated iµuv,

i σ2
uv . The black line has

the highest value and growth rate. The value for our two-
step algorithm increases slowly while the value for our
distributed algorithm is nearly constant (less than 4). The
relative difference of distributed algorithm is less than 3% for
all numbers of robots (could reduce to order of 1×10−4 with
smaller ε at the cost of higher number of auction iterations).
In plot (b), we further present average (red) and maximum
(blue) number of auction iterations taken by each robot over
100 instances. The average number grows linearly.

It implies that the search region (see Fig. 1 (b)) obtained
from Alg. 1 is small and excludes a large percentage of
extreme points. Our algorithms solve less number of risk-
averse problems than enumerating all extreme points and is
scalable to the number of robots. Further, our distributed
algorithm produces a good approximate solution with the
smallest number of iterations.

B. Scability to the size of the map

We also study the scability of our algorithms to the
number of nodes in graph varying from 500 to 2500 with
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Fig. 2. (a) The average number of risk-averse problems solved and (b)
the total number of auction iterations for each robot solving CC-STAP with
different number of robots
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Fig. 3. (a) The average number of risk-averse problems solved and (b)
the total number of auction iterations for each robot solving CC-STAP with
different number of nodes in graph

500 increment. The number of edges increases from about
8000 to 27000 accordingly. The number of robots is 60.
The results are presented in Fig. 3. For certain number of
nodes in plot (a), we compute the average number over
100 instances under different graphs having same number
of nodes and randomly generated iµuv,

i σ2
uv . The value for

our distributed algorithm and two-step algorithm are nearly
constant while the number for black line grows slowly. The
relative difference for the distributed algorithm is less than
2%. In plot (b) we present both average (red) and maximum
(blue) number of the auction iterations for each robot.

The results show that the number of nodes does not have
a great influence on the number of iterations and auction
iterations. It influences more on the complexity of Dijkstra
solving shortest path problems than the efficiency of our way
of generating risk-averse problems.

VII. SUMMARY

We presented a novel algorithm for solving chance con-
strained simultaneous task assignment and path planning on
a graph (or roadmap) with stochastic edge costs. We proved
that CC-STAP can be solved optimally by solving a sequence
of deterministic STAP. We proved that the deterministic
STAP can be solved optimally by a linear assignment prob-
lem with cost equal to the shortest path to the task location.
We also present a distributed algorithm to solve CC-STAP
based on the auction algorithm. The simulation results show
that both our distributed algorithm and centralized two-step
algorithm is scalable with the number of robots and the size
of the graph.
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