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Abstract— We present a novel algorithm for combined task
assignment and path planning on a roadmap with stochastic
costs. In this problem, the initially unassigned robots and tasks
are located at known positions in a roadmap. We want to assign
a unique task to each robot and compute a path for the robot to
go to the task location. Given the means and variances of travel
cost, our goal is to develop algorithms that guarantee that for
each robot, with high probability, the total travel cost is below
a minimum value in any realization of the stochastic travel
costs. We prove that the solution can be obtained by solving
(a) a chance-constrained shortest path problems for all robot-
task pairs and (b) a linear bottleneck assignment problem in
which the cost of an assignment is equal to the optimal objective
value of the former problem. We propose algorithms for solving
the chance-constrained shortest path problem either optimally
or approximately by solving a number of deterministic shortest
path problems that minimize some linear combination of means
and variances of edge costs. We present simulation results on
randomly generated networks and data to demonstrate that our
algorithm is scalable with the number of robots (or tasks) and
the size of the network.

I. INTRODUCTION

In this paper we are considering multi-robot task allocation
problems where robots have to move to target destinations
for executing a task. Such problems arise in a number of
applications including search and rescue, goods or parts
transfer in warehouses or factory floors, automated service
vehicles picking up or dropping off people or goods. In
such problems the robots have to be assigned to a target
destination and a path has to be planned for each robot such
that a team performance objective is optimized. We call this
problem the simultaneous task allocation and path planning
(STAP) problem.

Each robot incurs a cost (time or energy) in executing
a task. The overall team performance cost can be a sum
of the individual robot costs (also called sum objective)
or the maximum of the individual robot costs (also called
bottleneck objective). The choice of using sum objective or
bottleneck objective is context-dependent. In this paper, we
consider the bottleneck objective. Two common contexts in
which the bottleneck objective is used are: (a) when we want
the robot team to complete their tasks in minimum time and
(b) when we want the energy usage in completing the task
to be as balanced as possible or the maximum energy usage
by any robot to be as small as possible.
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We assume that the robots move on a graph in an open
environment, where other (uncontrolled) mobile agents like
people or manually operated vehicles can occupy the space.
The graph can represent an actual road network or pre-laid
paths (e.g., in warehouses) or a roadmap [9], [10], [8] which
captures the collision-free configuration space of the robots.
Since there are uncontrolled agents in the environment, we
assume that robots have local collision avoidance schemes to
avoid mobile obstacles. To avoid collisions, robots may have
to slow down or deviate locally from their planned paths, thus
making travel costs (like time or energy consumed) stochas-
tic. Therefore, we assume that the cost on each edge of the
graph is a random variable with known mean and variance.
Thus, the cost of any path between a robot-destination pair
will be a random variable, hence, the team performance cost
is a random variable. Our goal is to compute a solution for
the STAP problem that provides probabilistic certificates on
the team performance of the multi-robot system.

More precisely, the simultaneous task assignment and path
planning (STAP) problem in the presence of uncertainty
about the task execution costs is as follows: Compute the
assignment of tasks (targets) to robots as well as paths
to reach the tasks and a minimum value (say y) of the
team performance objective such that we have a guarantee
that the robot team performance will be less than y with
high probability (say 0.95) under any realization of the
random costs. Such a solution will provide a probabilistic
performance certificate on the performance of the robot team.
For example, if we are interested in the time of completion
of the tasks by the robots, then y will provide the minimum
time by which all robots will complete their tasks with high
probability, irrespective of the actual values the random costs
take in a given scenario.

Related Work: Technically, the STAP problem is a chance-
constrained nonlinear integer optimization problem, which
makes it challenging to solve. To the best of our knowledge,
there are no available algorithms with theoretical guarantees
on solution quality that can solve combined task assignment
and planning problem with stochastic costs and bottleneck
objective. In our previous work [28], we propose an algo-
rithm for solving the STAP problem with the sum objective.
When we consider the bottleneck objective instead of the
sum objective, the technical problem becomes quite different.
In [28], there is a single chance constraint for the total cost
of the robot team, whereas for the bottleneck objective there
are multiple chance constraints (one for each robot). As
such, the method proposed in [28] cannot solve the problem
with multiple chance constraints. In [16], the authors solve



a task allocation problem under uncertainty for analyzing
the sensitivity of the optimal assignment with respect to the
uncertainty in payoffs. In [23], a redundant robot assignment
on graphs with uncertain edge costs is studied. In [29], the
authors study chance-constrained discrete submodular max-
imization problem and provide an algorithm that produces
solutions within a constant factor of the optimal and an
additive term.

In the extant literature, there has been some effort in
solving different variations of the stochastic shortest path
problem [1], [2], [11], [13], [14], [15], [18], [19], [21], [22],
in which one robot has to plan its motion to a destination
node, with random costs on the edges. In [12], the authors
considered a stochastic path planning problem for one robot
that has to visit a set of nodes in a predefined sequence. Our
problem involves both path planning and the task assignment
which is not predefined. In the deterministic setting com-
bined goal assignment and collision-free trajectory planning
problem has been studied in [24], [25], [20]. The distinction
of these papers from our problem is that we consider
stochastic costs and our planning is on a discrete structure
instead of continuous space.

Contributions: We model the stochastic STAP problem
as a chance-constrained combinatorial optimization prob-
lem and call the problem chance-constrained simultaneous
task assignment and planning (CC-STAP) problem. One key
contribution is to prove that the optimal solution to CC-
STAP can be obtained by solving two related sub-problems,
namely, (a) chance-constrained shortest path (CC-SP) prob-
lems between all robot-destination pairs and (b) linear bottle-
neck assignment problem formed from the outputs of the CC-
SP problems. This leads to a two-step deterministic approach
to solving CC-STAP, which is another key contribution
of this paper. We also leverage work on solving chance
constrained combinatorial optimization problems [26], [27]
and present a novel algorithm for solving the CC-SP prob-
lem, which is faster than existing algorithms [18], [17]. We
present simulation results demonstrating the scalability of our
algorithm for an increasing number of robots and tasks. Due
to space constraints we have only presented the statements
of the key Lemmas without the proofs. The proofs of the
Lemmas are available in a supplementary document [5].

II. CHANCE CONSTRAINED SIMULTANEOUS TASK
ASSIGNMENT AND PATH PLANNING

We now present the multirobot simultaneous task assign-
ment and planning problem formally. We assume that there
is a roadmap representing the free configuration space of
the robots. Formally the roadmap is modeled as a graph
G = (V,E), where V is a set of nodes representing collision
free configurations and E is a set of edges, which consist of
collision free paths between two nodes. The nodes and edges
are collision free with respect to the static obstacles. Given
a source-destination pair s, d ∈ V , a path from s to d is a
sequence of edges that connect a sequence of distinct nodes.
The shortest path between s and d is the path with least cost.
Let cuv be the cost of an edge (u, v) and y be the cost of a

path. Let xuv be a binary decision variable which is 1 when
edge (u, v) is included in the path and 0 otherwise.

Each robot is initially at a given position in the graph
denoted by si and each task (unassigned initially), denoted
by tj , is located at given position. Let zij be a binary decision
variable with zij = 1 when task tj is assigned to robot ri
and 0 otherwise. Let ixuv be another binary decision variable
where ixuv = 1 if edge (u, v) is in the path of ri, and 0
otherwise. Let V ′ = V \{si, tj} and N (u) be the neighbors
of a node u. Our goal is to assign each robot to a unique
task and compute a path for it. The CC-STAP problem is

min y

s.t. P

 ∑
(u,v)∈E

icuv
ixuv ≤ y

 ≥ p, i = 1, . . . , n.

∑
v∈N (u)

ixuv −
∑

v∈N (u)

ixvu =

 1, if u = si,
−zij , if u = tj ,
0, ∀u ∈ V ′,

i = 1, . . . , n.
n∑
i=1

zij = 1, ∀j;
n∑
j=1

zij = 1, ∀i; zij ∈ {0, 1}

ixuv ∈ {0, 1}.

(1)

A feasible solution for (1) is a set of paths such that
(a) each robot can reach a unique task position through
it (constraints in the second and third rows in (1)) and
(b) the total path traversal cost for each robot in any
realization is less than a value y with at least a pre-specified
probability p (set of chance constraints in (1)). Note that
there is one chance constraint for each robot. The second
set of constraints comprises of one path constraint for each
robot. These constraints are slightly different from the path
constraints in the shortest path problems and has the variable
zij . If zij = 1, i.e., robot ri is assigned to task tj , then the
constraints become a path constraint for the robot to go from
si to tj . If zij = 0, then it implies that the robot either does
not visit that task node or it can pass through the task node
on the way to its destination. There are n|V | constraints in
the second set of constraints. The constraints for zij in the
third row guarantee that each robot performs a single task
and each task can be assigned to only one robot.

Note that the technical challenge in solving (1) directly is
that it is an integer nonlinear optimization problem where
the nonlinearity arises due to the chance constraints. In the
rest of the paper, the feasible set corresponding to the second
constraint and fourth constraint will be denoted by X1 and
the third constraint will be denoted by X2.

III. OVERVIEW OF SOLUTION APPROACH

We will now rewrite the probabilistic constraint in (1)
under different assumptions on the random edge costs.
If the edge costs icuv are independent Gaussian random
variables, the total path cost for each robot is a Gaus-
sian random variable with mean and variance equal to
the sum of means and variances, i.e.,

∑
u,v

icuv
ixuv ∼



N (
∑
u,v

iµuv
ixuv,

∑
u,v

iσ2
uv
ixuv). If we standardize the

Gaussian random variable in each chance constraint and let
C denote Φ−1(p), the chance constraint is written as∑

(u,v)∈E

iµuv
ixuv + C

√ ∑
(u,v)∈E

iσ2
uv
ixuv ≤ y, ∀i (2)

Note that the Gaussian assumption is convenient but not
necessary. As long as the inverse cumulative distribution
function, Φ−1, is known, the value of C can be computed.
Furthermore, for other distributions, we could obtain an
upper bound for the optimal objective value by using C =√

p
1−p which comes from Chebyshev’s inequality.

Let iy denote the CC path cost for robot ri to its assigned
task. Thus y = maxi

iy, which implies that the optimal
solution to (1) can be obtained by solving

min maxi
iy

s.t.
∑

(u,v)∈E

iµuv
ixuv + C

√ ∑
(u,v)∈E

iσ2
uv
ixuv ≤ iy, ∀i

ixuv ∈ X1, zij ∈ X2

(3)

Definition 1: In a feasible solution of (3), the robot with
the greatest CC path cost, iy, is called the bottleneck robot.

Lemma 1: Let ri be the bottleneck robot and di be its
assigned task location in the optimal solution to Problem (3).
Then, the path for bottleneck robot ri to di in the optimal
solution is the CC shortest path of robot ri (corresponding
to optimal solution of Problem (4) for robot ri to destination
di).

Proof: See supplementary document [5].
Lemma 1 implies that the the optimal solution of prob-

lem (3) is also optimal for problem (1). To see this, note
that the feasible solutions in problem (3) are always feasible
to problem (1) in which y = maxi

iy. Hence the optimal
solution of problem (3) is feasible to (1). From Lemma 1,
the optimal solution of problem (1) can always be converted
to a feasible solution to problem (3) with the same objective
value, by replacing each path with CC shortest path having
same starting point and destination, and iy equal to its CC
shortest path. Furthermore, y = maxi

iy. Therefore, the op-
timal solution of problem (3) is also optimal to problem (1).

The above discussion leads to our two-step method to
solve (3) which consists of (1) Formulate and solve a chance-
constrained shortest path problem for each robot-task pair
(ri, tj). Thus, a total of n2 chance-constrained shortest path
problems have to be solved at this step. (2) Using the optimal
solutions from the CC-SP for each robot-task pair, solve a
bottleneck assignment problem.

The first problem to compute the CC shortest paths for a
robot-task pair (ri, tj) is formulated as:

min iyj

s.t.
∑

(u,v)∈E

iµuv
ixuv + C

√ ∑
(u,v)∈E

iσ2
uv
ixuv ≤ iyj

ixuv ∈ X1

(4)
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Fig. 1. In the variance-mean plane, any path is a point with coordinates
equal to the sum of variances and means of the edge cost in the path. The
objective function value in (6) of the path is equal to the vertical intercept
of the parabola through the associated point. The optimal path is the point
with the smallest vertical intercept of the parabola through it.

Let `ij be the optimal objective value of the problem above,
i.e., `ij = min iyj . Then the task assignment problem is:

min maxi

n∑
j=1

`ijzij

s.t.

n∑
i=1

zij = 1,

n∑
j=1

zij = 1, zij ∈ {0, 1} ∀i, j.
(5)

Given CC shortest path costs for all robot-task pairs `ij ,
the problem above is essentially a linear bottleneck assign-
ment problem. The goal is to find proper task assignment
to minimize the CC path cost of the bottleneck robot which
is same as the objective in problem (3). zij is the decision
variable for the task assignment with the same definition
in formulation (1). It is guaranteed that that each robot
is assigned to a unique task which is equivalent to X2 in
problem (3). Further, since `ij is obtained from problem (4),
a feasible solution in problem (5) also satisfies the chance
constraint and X1 in problem (3). Therefore the feasible
solution of problem (5) is feasible to problem in (3) and
vice versa. This leads to:

Lemma 2: The optimal solution of problem (3) can be
obtained by solving problem (4) and (5).

Proof: See supplementary document [5].

IV. CHANCE CONSTRAINED SHORTEST PATH PROBLEM

The CC-SP problem in (4) can be written as an equivalent
mean-risk model as follows:

min
∑

(u,v)∈E

iµuv
ixuv + C

√ ∑
(u,v)∈E

iσ2
uv
ixuv

s.t. ixuv ∈ X1

(6)

This is a non-convex combinatorial optimization problem
where the number of integer variables, ixuv , is equal to the
number of edges in the graph. However, this problem can
be viewed as an optimization problem in a two-dimensional
(2D) plane shown in Fig. 1. Consequently, (6) can be solved
exactly by solving a number of deterministic problems that
minimize some linear combination of means and variances
of the edge cost.



We will first present a geometric view of the optimization
problem in (6), as shown in Fig. 1. Let {ixuv} be a feasible
solution to (6) (i.e., a path). For each path, we define µ̄ =∑
u,v

iµuv
ixuv and σ̄2 =

∑
u,v

iσ2
uv
ixuv as the y and x

coordinates of the point corresponding to the path. Thus, any
feasible solution (path) is a point on variance-mean plane.
For the path {ixuv}, we can evaluate the objective in (6) and
we call it k. Then µ+Cσ = k is a parabola passing through
the point (σ̄2, µ̄). Thus, for each point we can associate a
parabola passing through it, and all these parabolas are level
curves of the objective in (6). The vertical intercept of the
parabola is the cost of the path. The optimal solution denoted
by s∗ is a point on the variance-mean plane with the smallest
vertical intercept of the associated parabola.

Lemma 3: The optimal solution, s∗ is an extreme point
of the lower convex hull of the set of all feasible points on
variance-mean plane.

Proof: See supplementary document [5].
Note that although (6) can be viewed as an optimization

problem on a 2D point set, the challenge is that the number
of points can be quite large (exponential in the number
of variables) and thus cannot be enumerated or known a
priori. Therefore, we formulate the risk-averse shortest path
problem, which can be used to solve CC-SP in (6)

min
∑

(u,v)∈E

(iµuv + λiσ2
uv)

ixuv s.t. ixuv ∈ X1, ∀i (7)

For a given value of the risk-averse parameter, λ, this
problem is essentially a deterministic shortest path problem
where the edge cost is a linear combination of the mean
and variance. The objective function of (7) on variance-mean
plane is a straight line. Thus, minimizing the objective will
find an extreme point of the solution set. By Lemma 3,
the optimal solution of (6) is an extreme point which can
be computed by solving a risk-averse shortest path problem
in (7) for some value of λ. The challenge is to find the proper
value of λ. In general, we could enumerate all extreme points
on variance-mean plan by solving risk-averse problems (7)
with different choices of λ in the range [0,+∞). However,
the total number of extreme points could be large and thus
enumeration of all extreme points could be expensive.

Let the optimal objective function value for risk-averse
problem in (7) with λi be denoted by µi+λσ2

i . The following
lemmas help to find the upper bound of λ̄.

Lemma 4: Let λ̄ be a risk-averse parameter and ix∗uv be
the optimal solution of the risk-averse problem (7) with
λ̄. Further define σ̄ =

√∑
u,v

iσ2
uv
ix∗uv . The risk-averse

parameter λ̄ is an upper bound of the optimal risk-averse
parameter when the condition λ̄σ̄ = C is satisfied.

Proof: See supplementary document [5].

A. Algorithm for Solving Chance Constrained Shortest Path

Alg. 1 finds such upper bound for λ. It starts with solving
problem (7) with λk equal to 0 (line 2). The obtained solution
is stored in the solution set S1. Further, the coordinate
associated with this solution (σ2

k, µk) on the variance-mean

plane is obtained (line 3). Then we check if λkσk = C.
If no, the risk-averse parameter is updated as λk+1 = C

σk

and we go back to step 2 (lines 4 − 5). If yes, the current
λk is the upper bound for the risk-averse parameter. The
algorithm terminates in a finite number of iterations. Note
that the optimal solution of the risk-averse parameter equal
to λ̄ is a nearly optimal solution (see Section V).

In the second part of our algorithm, we enumerate all
extreme points in the search region restricted by λ̄ by solving
the risk-averse problem with λ ∈ (0, λ̄]. The procedure is
presented in Alg. 2. The input is the solution set S1 obtained
from the previous step including all extreme points computed
thus far. These points are all in the search region. We need to
find the rest of the extreme points. More precisely, we should
find extreme points below the straight line connecting any
consecutive pair of solutions in S1 if it exists, e.g., (sa, sb)
in Figure 1. We create a point pair set S′i which is initialized
as S′0 = {(s0, s1), ...(sk−1, sk)} (line 1). In any iteration,
say i, we first create a empty point pair set S′i+1 storing
the point pairs for the next iteration (line 3). For each point
pair in S′i, say (sj−1, sj), the risk-averse parameter λ is the
negative of the slope of the line connecting sj−1 and sj
on variance-mean plane, i.e., λ = −µj−µj−1

σj−σj−1
(line 4). The

algorithm solves the risk-averse problem with λ (line 5). If
the obtained solution s is different from sj−1 and sj , the
solution s is a new extreme point which is then stored in the
set S1. Two new point pairs (sj−1, s) and (s, sj) are stored
in S′i+1 (lines 6−7). If the obtained solution is same as sj−1
or sj , there is no extreme point below the line through sj−1
and sj . After solving all the risk-averse problems generated
from S′i, we check whether the updated S′i is empty. If it is
not empty, or in other words, there is a new extreme point
obtained from the previous step, we move on to the next
iteration and repeat the same procedures starting from line
3. We stop when S′i is empty, which means no new extreme
point is obtained and we have found all extreme points in
the search region. The optimal solution can be obtained from
the extreme point set S1 (lines 12− 13).

Algorithm 1 Find the upper bound for λ
Input: C, iµuv, iσuv .
Output: λ̄, S1.

1: Initialization: let k = 0, λk = 0.
2: Solve problem (7) with λk.
3: Compute (σ2

k, µk) and store it to solution set S1.
4: if λkσk 6= C then
5: Update λk+1 = C

σk
and go back to step 2.

6: else
7: return λ̄ = λk and S1.

The second sub-problem that we have to solve is the linear
bottleneck assignment problem in which the greatest CC
path cost in the assignment should be minimized. It is a
well-studied problem and there are many algorithms to solve
it [6], [7], [3], [4]. In this paper, we use a threshold algorithm
published in [7].



Algorithm 2 Compute the optimal solution of CC-LAP
Input: Solution set S1.
Output: Optimal solution s∗ and optimal objective value y∗

for CC-LAP.
1: Compute point pair set S′0 =
{(s1, s2), (s2, s3), ..., (sk−1, sk)} (suppose λk = λ̄).

2: while S′i is not empty do
3: Create empty point pair set S′i+1

4: for each point pair in S′i, say (sj−1, sj) do compute
risk-averse parameter λ = −µj−µj−1

σ2
j−σ2

j−1
.

5: Solve risk-averse problem (7) with λ.
6: if the obtained solution say s 6∈ {sj−1, sj} then
7: Store s in S1 and store point pairs (sj−1, s),

(s, sj) in S′i+1.
8: end if
9: end for

10: i = i+ 1.
11: end while
12: s∗ = arg minsj∈S1

µj+Cσj , y∗ = minsj∈S1
µj+Cσj

13: return s∗, y∗ =0

Fig. 2. A CC-STAP example. The alarms go off in several places in the
roadmap marked by squares. A team of robots are initially located at places
marked by circles. The computed assignments and paths are shown in red.

V. SIMULATION RESULTS

We will first present a case study in a multi-robot emer-
gency response scenario. A team of robots are located at
the positions marked by circles while the alarms go off in
places marked by squares in Fig. 2. The travel time for a
robot to a task location is dependent on the traffic condition,
hence, it is a random variable. We need to assign a task to
each robot and compute their path to the alarm location. Our
algorithm computes the earliest time such that each robot is
guaranteed to finish the job within the time window with a
high probability.

The region in Fig. 2 is selected from OpenStreetMap
(OSM). The means and variances of the travel cost of
the edges are generated based on the distance and tags of
the roads from the OSM file (e.g., edge with tag highway
has smaller variance). The probability, p, is set as 0.9.
The solutions of our algorithm are shown as red paths in
Fig. 2. Under the same setup, we also solve the problem by
optimizing the expectation of the travel cost. The path for the
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Fig. 3. The probability that the travel times of the bottleneck robot do
not exceed the optimal time window obtained by solving CC-STAP and
optimizing expected travel time.

bottleneck robot (the blue dashed line) is different from our
solution. For both methods, we use Monte Carlo simulation
to compute the probability that the travel time of each robot is
within the time window obtained. The probabilities for the
bottleneck robot (which takes the longest time) are shown
in Fig. 3. The probability for our solution converges to
0.90 while the probability converges to 0.5 for the method
optimizing the expectation. In other words, in a particular
realization, the robot may take longer time than the optimal
expected time window to attend the emergency. The paths
and time windows obtained by optimizing expectation might
not be a robust solution to the application in which the safety
or success rate are important. This is one of the advantages
of using the chance constrained formulation.

Besides the case study, we perform extensive simulations
to test our algorithm in more general scenarios (e.g., larger
number of robots, size of map). The computational cost of
our algorithm is

∑n
i=1 Ti + T ′ where n is the number of

robots (tasks), Ti is the computational cost of each robot,
T ′ is the computational cost for solving a linear bottleneck
assignment problem. The computational cost of each robot
Ti is equal to T̄ ·

∑n
j=1Kj where Kj is the number of

deterministic shortest path problems solved for solving a
CC shortest path problem from ri to task tj and T̄ is the
computational cost for solving the shortest path problem,
which is O(|E|+ |V | log |V |) for Dijkstra’s algorithm.

A key efficiency measure of our algorithm is the number of
deterministic shortest path problems solved by a single robot,
i.e.,

∑n
j=1Kj . However, this number is problem parameter

dependent and it is hard to give a priori bounds. We will plot
the values of

∑n
j=1Kj with different number of robots and

the size of graph. We show through extensive simulations
that: (a) our algorithm is scalable with the number of robots
(tasks) and the size of the maps. (b) the subroutine we
propose to solve CC shortest path problem is scalable with
the number of robots (tasks) and the size of the maps. (c)
With only the first step of our algorithm in Alg. 1, we can
compute nearly optimal solutions.

The simulations were done on a computer with Intel



i7 2.60GHZ CPU and 16GB RAM. We assume that the
number of robots is same as the number of tasks. The
desired probability p in the chance constraints is 0.99. We
created different instances with randomly generated means
and variances for edge cost, i.e. iµuv,i σ2

uv . The means are
generated from a continuous uniform distribution U(20, 100)
and the variances are generated from a continuous uniform
distribution with different magnitude of the range so that the
edge with higher mean also tends to have a higher variance.
We test both the proposed algorithms, namely, the exact
algorithm and the algorithm in which the subroutine that
solves CC shortest path problem implements only the first
step of our algorithm, namely, the approximate algorithm.

Scalability with the number of robots: In the first set of
simulations, we study the scalability of our algorithm with
the number of robots. The number of robots vary from 20
to 100 with increment of 10. Robots are working on a graph
with 2500 nodes and 27099 edges. The results are provided
in Fig. 4. Each data point is obtained from 100 instances
with randomly generated iµuv,

i σ2
uv For a certain number

of robots (x−coordinate) in plot (a), we compute both the
average and the maximum number of deterministic problems
solved by a single robot. The average and the maximum
number for the exact algorithm are presented by blue circles
and crosses. The results for the approximate algorithm are
presented by red circles and crosses. It is shown that the
average numbers for both exact and approximate algorithm
grow almost linearly. It implies that the average number
of deterministic problems solved for the CC shortest path
problem is close to a constant, irrespective of the number of
robots. The approximate algorithm solves smaller number
of deterministic problems than the exact algorithm. The
maximum numbers are less than 400 and are scalable to
the number of robots. The plot (b) presents the average and
the maximum relative difference of the cost value between
the exact solution and the approximate solution. The average
differences are all less than 1% and the highest difference
over a total of 1000 scenarios in this set of simulations is less
than 8%. Hence the solution obtained from the approximate
algorithm is nearly optimal. The actual running time varies
between 3 to 300 seconds as the number of robots increase.
Scalability with the size of the graph: In the second set

of simulations, we study the scalability of our algorithms
with the number of nodes of the roadmap. The number of
nodes graphs vary from 500 to 2500 with increment of 500.
The number of edges increase from about 8000 to 27000
accordingly. The number of robots is 50. The results are
presented in Fig. 5. For a given number of nodes, we generate
100 different graphs with randomly generated iµuv,

i σ2
uv .

Similar to the first set of simulations, we compute the number
of deterministic shortest path problems solved by a single
robot. As shown in Fig. 5 (a), the average numbers of
deterministic problems solved by both the exact and the
approximate algorithm are nearly constant. It implies that
the size of the graph does not have great influence on the
number of deterministic problems solved by each robot.
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Fig. 4. Scalability with the number of robots: (a) The number of
deterministic shortest path problems solved by a single robot and (b) the
relative difference of the travel costs obtained by our exact algorithm and
approximate algorithm.
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Fig. 5. Scalability with the number of nodes of the graph: (a) The number
of deterministic shortest path problems solved by a single robot and (b) the
relative difference of the travel costs obtained by our exact algorithm and
approximate algorithm.

Fig. 5 (b) shows that our approximate solution is nearly
optimal (relative difference of less than 1% on average).
The actual running time varies from 60 to 80 seconds as
the number of nodes increase.

VI. CONCLUSION

In this paper, we present algorithms to solve the simul-
taneous task assignment and path planning problem un-
der stochastic travel costs. We formulate the problem as
a chance-constrained combinatorial optimization problem,
called CC-STAP. We prove that the CC-STAP problem is
equivalent to a linear bottleneck assignment problem in
which each assignment cost is equal to the CC shortest path
cost for each robot-task pair. We propose an algorithm to
solve the chance-constrained shortest path by solving a num-
ber of deterministic shortest path problems. Our approach is
able to compute both exact solution (assuming the random
edge costs are independent and Gaussian) and approximate
solution. The simulation results demonstrate that our algo-
rithm is scalable with the number of robots as well as the
size of the road network. Further, simulation results also
demonstrate that the approximate algorithm obtains a nearly
optimal solution. Although we provided empirical evidence
that our algorithm runs reasonably fast, a limitation of our
current work is that there is no theoretical computational
complexity guarantees of our algorithm. In the future we
would like to study this question.
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