
Algorithm for Multi-Robot Chance-Constrained Generalized
Assignment Problem with Stochastic Resource Consumption

Fan Yang1 and Nilanjan Chakraborty2

Abstract— We present a novel algorithm for the multi-robot
generalized assignment problem (GAP) with stochastic resource
consumption. In this problem, each robot has a resource (e.g.,
battery life) constraint and it consumes a certain amount of
resource to perform a task. In practice, the resource consumed
for performing a task can be uncertain. Therefore, we assume
that the resource consumption is a random variable with known
mean and variance. The objective is to find an assignment of
the robots to tasks that maximizes the team payoff. Each task
is assigned to at most one robot and the resource constraint
for each robot has to be satisfied with very high probability.
We formulate the problem as a chance-constrained combina-
torial optimization problem and call it the chance-constrained
generalized assignment problem (CC-GAP). This problem is an
extension of the deterministic generalized assignment problem,
which is a NP-hard problem. We design an iterative algorithm
for solving CC-GAP in which each robot maximizes its own
objective by solving a chance-constrained knapsack problem in
an iterative manner. The approximation ratio of our algorithm
is (1+α), assuming that the deterministic knapsack problem is
solved by an α-approximation algorithm. We present simulation
results to demonstrate that our algorithm is scalable with the
number of robots and tasks.

I. INTRODUCTION

Multi-robot task assignment problem is a fundamental
problem that arises in a wide variety of application scenarios
like manufacturing, automated transport of goods, environ-
mental monitoring, and surveillance. Multi-robot generalized
assignment problem (GAP) [1], [2], [3], is one formalization
of task assignment problems that arises in situations where
robots have resource constraints and have to consume a
certain amount of the resource to obtain the payoff for
performing a task. Each robot can perform multiple tasks
as long as the total resource consumed to execute the tasks
is within the resource budget. Each task is assigned to at
most one robot. The objective is to find the assignment with
the maximum team payoff. GAP is a NP-hard combinatorial
optimization problem, which has been extensively studied
both in operations research [4], [5] and theoretical computer
science [6], [7], [2], [8]. However in many multi-robot appli-
cation scenarios, the resource consumption in executing tasks
are influenced by uncertain environmental factors and may
not be known exactly before task execution. Consequently,
the resource consumption could be stochastic. Therefore, in
this paper, we study the generalized assignment problem with
stochastic resource consumption constraints.

1Fan Yang and 2Nilanjan Chakraborty are with the
Mechanical Engineering Department at Stony Brook University.
Email: {fan.yang.3, nilanjan.chakraborty}
@stonybrook.edu This work was supported in part by AFOSR
award FA9550-15-1-0442 and NSF award CMMI 1853454.

GAP with stochastic resource consumption is useful in
many multi-robot applications. The resource could be energy,
task execution time, or any other consumable resources de-
pending on specific application. One application is the multi-
robot part delivery in an automated factory. A team of robots
should pick up parts from certain clustered storage locations
and deliver it to processing stations. In this situation, the
energy consumed by each robot to travel between the storage
location and delivery station could be influenced by different
sources of uncertainty. For example, robot may consume
more energy to avoid static and moving obstacles.

In this paper, we present algorithms for stochastic gener-
alized assignment problem where the resource consumption
are random variables with known means and variances. The
problem is formulated as the chance-constrained generalized
assignment problem (CC-GAP). More formally: Given nr
robots and nt tasks, with a payoff for each robot-task pair,
and a constraint on the resource (e.g., battery life) of each
robot, find an assignment of robots to tasks so that the team
payoff is maximized and each robot can execute its tasks
with a guarantee that its resource constraint will not be
violated with high probability (say 0.99) irrespective of the
actual value of the random resource consumption taken in
any realization. The team payoff is the sum of the individual
robot payoffs.

Contributions: We model the stochastic generalized as-
signment problem as a chance-constrained combinatorial
optimization problem. Inspired by the idea for solving de-
terministic GAP in [2], we design an algorithm for CC-
GAP where each robot solves a chance-constrained knapsack
problem (CC-KNAP) sequentially. Leveraging algorithms for
chance-constrained knapsack problem optimally, from our
previous work [9], we provide an α-approximation algorithm
for CC-KNAP using any α-approximation algorithm for de-
terministic knapsack problem as a subroutine. The solution of
CC-GAP is proved to be a (1+α)-approximation (which is 2
if the CC-KNAP is solved optimally). We present simulation
results demonstrating the scalability of our algorithm with the
number of robots and tasks. To the best of our knowledge,
this is the first algorithm that solves CC-GAP with (1 +α)-
approximation ratio.

II. RELATED WORK

Task allocation is a key problem in many applications of
multi-robot systems, e.g., point-to-point parts transfer [10],
multi-robot routing [11], multi-robot decision making [12],
and other multi-robot coordination problems (see [13], [14],
[15]). There are different variations of the multi-robot task



assignment problem that have been studied in the literature
depending on the assumptions about the tasks and the robots
(see [16], [13], [17], [18] for taxonomies and surveys). We
will focus on the literature about multi-robot task allocation
under uncertainty.

In [19], the authors analyze the sensitivity of the optimal
assignment with respect to the uncertainty in payoffs. In [20],
a redundant robot assignment on graphs with uncertain edge
costs is studied. Task allocation or team formation with
chance constraints have been studied in [21], [22], [23], [9],
[24]. In [24], the authors study discrete submodular maxi-
mization problem with payoff uncertainty. In [25], we have
studied the chance-constrained simultaneous task assignment
and path planning for multiple robots with uncertain path
cost. In all of the papers above, the uncertainty is in the
objective which is the total path cost of the robot team. The
chance-constrained generalized assignment considered in this
paper has uncertain resource consumption which is in the
constraint of the formulation and we have to make sure that
the resource constraint for each robot is not violated with
probabilistic guarantee.

Most of the current literature on stochastic generalized
assignment problem (SGAP) study the problem in which
the resource consumption is uncertain before an initial as-
signment is made and a recourse decision is allowed to
compensate for the adverse effect of the initial assignment
after the actual consumption is known (usually with incurred
penalty). The two-stage (or multi-stage) programs are widely
used here [26], [27], [28], [29], [30]. However, in robotics
applications, the tasks have to be executed before the random
resource cost is known and thus the two-stage models are
not applicable. Therefore, we model SGAP as a chance-
constrained combinatorial optimization problem.

The stochastic knapsack problem is a special case of
SGAP when there is only one robot. Based on the sources of
the uncertainty, it can be categorized into random payoffs-
deterministic weights and random weights-deterministic pay-
offs. The former problems are studied in [31], [32], [33],
[34]. The latter problems are also widely studied. The
multiple-stage model is used in [35], [36]. The chance
constraint model is used in [37], [38], [39], [9], [40], [41].
A PTAS for chance-constrained knapsack problem with
Gaussian random variable is proposed in [39]. A Relaxed
FPTAS is presented in [41]. In our previous work [9], we
present method that compute the optimal solution of chance-
constrained knapsack problem with the assumption that the
deterministic knapsack problem is solved optimally.

III. PROBLEM FORMULATION

We will now introduce the chance-constrained generalized
assignment problem and a sub-problem of CC-GAP called
the chance-constrained knapsack problem. We will show
the relationship between the chance-constrained knapsack
problem and the deterministic risk-averse knapsack problem,
which is key for designing algorithms to solve CC-GAP.

We consider a set of robots {r1, . . . , rnr} and a set of
tasks {t1, . . . , tnt

}. Let aij be the payoff for assigning robot

ri to task tj . Let wij be the resource (e.g., energy) consumed
by robot ri to perform task tj . Each robot has a resource
capacity Wi. Let xij be the binary decision variable that is
1 when tj is assigned to ri and 0 otherwise. The deterministic
generalized assignment problem is

max

nr∑
i=1

nt∑
j=1

aijxij

s.t.

nt∑
j=1

wijxij ≤Wi, ∀i = 1, . . . , nr

nr∑
i=1

xij ≤ 1, ∀j = 1, . . . , nt

xij ∈ {0, 1}, ∀i, j

(1)

where the first constraint in (1) is the resource constraint for
each robot. The second constraint guarantees that each task
is exclusively assigned to at most one robot.

In (1), the resource consumption variable, wij , is assumed
to be deterministic. However, in practice, the resource con-
sumption is usually a random variable. Thus, the satisfaction
of the resource constraint in (1) is dependent on the actual
realization of the random variables, which cannot be known
unless the task is executed. Therefore, we formulate a vari-
ation of (1), in which the resource constraint is represented
as a stochastic constraint.

A. Chance-constrained generalized assignment problem

We assume that the variables, wij , are independent Gaus-
sian random variables with known mean µij and variance
σ2
ij . Therefore, the resource constraint in (1), is written as

a probabilistic constraint, as shown in (2). The goal of CC-
GAP is to compute the assignment of robots to tasks with
the maximum payoff such that each robot is able to finish
the assigned tasks with a high probability (say 0.99).

max

nr∑
i=1

nt∑
j=1

aijxij

s.t. P

 nt∑
j=1

wijxij ≤Wi

 ≥ p, ∀i = 1, . . . , nr

nr∑
i=1

xij ≤ 1, ∀j = 1, . . . , nt

xij ∈ {0, 1}, ∀i, j

(2)

The first constraint in (2) is the chance constraint which
guarantees that for each robot, ri, the resource consumption
for executing its assigned tasks

∑nt

j=1 wijxij does not exceed
its resource capacity Wi with probability at least p, in any
realization of the random resource consumption. Note that
there is one chance constraint for each robot, so there are a
total of nr chance constraints.

It is well known in stochastic optimization [23], [42] that
probabilistic constraints of the form in (2) can be re-written



𝑦

𝑥

ҧ𝑠1
Ƹ𝑠1

ҧ𝑠2
Ƹ𝑠2

ҧ𝑠𝑛𝑟
Ƹ𝑠𝑛𝑟

Fig. 1: The assignment of any robot is represented by a point
on variance-mean plane. The feasible solution of CC-GAP
is a set of points that are under the parabola defined by the
corresponding chance constraints, e.g., {Ŝi}nr

i=1.

as a deterministic constraint
nt∑
j=1

µijxij + C

√√√√ nt∑
j=1

σ2
ijxij ≤Wi (3)

where C is a constant that depends on the probability, p. For
a distribution with known cumulative distribution function
φ, C = Φ−1(p). For distributions with information only
about the mean and variance, and no other information,
C =

√
p

1−p .
Geometric Interpretation of (3): For any robot, ri, there is

a point on a two-dimensional space in which the horizontal
and vertical coordinate are equal to the sum of variances and
means of the random resource consumption of the assigned
tasks, i.e., x =

∑nt

j=1 σ
2
ijxij and y =

∑nt

j=1 µijxij . We call
the plane as the variance-mean plane (see Fig. 1). Equa-
tion (3) implies that the chance constraint for each robot is
a parabola in the variance-mean plane with vertical intercept
equal to Wi. Any feasible assignment for ri should be located
below the corresponding parabola. Therefore the feasible
solution of CC-GAP in (2) is a set of points on variance-
mean plane which are located in the region below the
corresponding parabola defined by the chance constraint (3).
Besides, the assignments in the feasible solution of CC-GAP
should also satisfy the assignment constraints in (2).

The idea of our method is to compute the feasible assign-
ment that satisfies the chance constraint for each robot (S̄i
in Fig. 1) and then re-assign the tasks such that each task is
assigned to at most one robot while the chance constraints
are not violated (e.g., the initial assignment S̄1 changes to
Ŝ1 in Fig. 1).

B. Chance-constrained knapsack problem

If we consider the CC-GAP problem for one robot, say
rk, we get the chance-constrained knapsack problem, shown
in (4). The objective is to find the maximum payoff as-
signment for a single robot say rk such that the resource
consumption is within its capacity Wk with high probability.
CC-KNAP is a combinatorial optimization problem with a
non-convex feasible region, which is difficult to solve in
general.

max

nt∑
j=1

akjxkj

s.t.

nt∑
j=1

µkjxkj + C

√√√√ nt∑
j=1

σ2
kjxkj ≤Wk

xkj ∈ {0, 1}, ∀j = 1, . . . , nt

(4)

If we relax the integer constraint for xkj , the problem is a
second order cone program with integrality gap Ω(

√
nt) [39].

In our previous work [9], we showed that the CC-KNAP
problem in (4) can be solved by solving a sequence of de-
terministic problems called the risk-averse knapsack problem
(RA-KNAP). The RA-KNAP, given below, is a deterministic
knapsack problem in which the resource consumption is
equal to a linear combination of the mean and variance, i.e.,
µkj + λσ2

kj and the resource capacity is equal to W ′ (not
necessarily equal to Wk in (4)).

max

nt∑
j=1

akjxkj

s.t.

nt∑
j=1

µkjxkj + λ

nt∑
j=1

σ2
kjxkj ≤W ′

xkj ∈ {0, 1}, ∀j = 1, . . . , nt

(5)

The parameter λ is called the risk-aversion index (or param-
eter). Figure 2 shows the geometric relationship between the
CC-KNAP and RA-KNAP on the variance-mean plane.

𝑦

𝑥
(a)

𝑠1

𝑠2

ℛ2

𝑠3
𝑠4

𝑠5

(b)

ℛ4

ℛ5

𝑠𝑎
𝑠𝑏

𝑠𝑎

𝑠𝑏

Fig. 2: The feasible assignments of CC-KNAP and RA-
KNAP are located below the parabola defined by chance
constraint in (4) and straight line defined by the resource
constraint in (5) respectively. Ri denotes the intersection of
feasible region of CC-KNAP and RA-KNAP.

Geometric Relationship between CC-KNAP and RA-
KNAP: As shown in Figure 2, any feasible assignment of CC-
KNAP is a point under the parabola defined by the chance
constraint in (4). The feasible region for RA-KNAP is the
space below the straight line shown in Fig. 2(a). The slope
of the straight line is −λ and W ′ is equal to its vertical
intercept. Depending on the position of the straight line
defined by the resource constraint in (5), the optimal solution
of (5) could be either below or above the parabola defined
by the chance constraint in (4). In particular, the optimal
solution of (5) is feasible to (4) if the solution is below
the parabola, e.g., s2 in Fig. 2(a). The solution is thus a



lower bound of optimal solution of (4). In a special case, the
straight line from RA-KNAP in (5) is tangent to the parabola
from CC-KNAP in (4). Then any feasible solution of (5) is
below the parabola and therefore feasible to (4). Based on
these facts, we have the following important lemma.

Lemma 1: There exists a problem (5) with proper values
of λ and W ′ such that the optimal solution of (5) is also the
optimal solution to problem (4).

Proof: Let s∗ be the optimal solution of CC-KNAP
in (4). There always exists a straight line tangent to the
parabola defined by chance constraint in (4) such that its
lower half-space covers s∗. Suppose −λ and W

′
denote

the slope and vertical intercept respectively. The feasible
region of the resource constraint with λ and W

′
of RA-

KNAP in (5) is a subset of the feasible region defined by
the parabola from (4). Therefore s∗ is the optimal solution
of RA-KNAP with λ and W

′
. This is also true for RA-

KNAP with parameters different from λ and W
′

as long as
the lower half-space of straight line of RA-KNAP covers
s∗, and the optimal solution of RA-KNAP is feasible to
the chance constraint of CC-KNAP. For example, if we
rotate and translate the straight line on variance-mean plane
(change λ and W ′) in such a way that s∗ is below it and the
objective value of all feasible solutions of RA-KNAP above
parabola is less than that of s∗ (or no feasible solution of
RA-KNAP is above the parabola), the optimal solution of
the corresponding RA-KNAP is still s∗.

Lemma 1 implies that one way to solve the CC-KNAP
is to perform a two-dimensional search on the parameters λ
and W ′ to find the proper values of λ and W ′.

IV. SOLUTION APPROACH

In this section, we will introduce the algorithms to solve
CC-KNAP and CC-GAP. The algorithm for CC-KNAP it-
erates over different values of λ and W ′ methodically to
cover the whole feasible region of CC-KNAP. To solve
CC-GAP, each robot solves CC-KNAP sequentially with
updated payoffs in each iteration. We will prove that the
obtained solution of CC-KNAP is α-approximate when the
approximation ratio for the subroutine solving RA-KNAP is
α. Consequently, the obtained solution of CC-GAP is (1+α)-
approximate.

Definition 1: A solution (assignment), s, of a maximiza-
tion problem is α-approximate, with α ≥ 1, if and only
if αv(s) ≥ maxs∈R v(s) where v(·) denotes the objective
function value and R denotes the feasible region.

A. Algorithm for CC-KNAP

The algorithm for solving CC-KNAP follows [9]. How-
ever, the performance analysis of the algorithm differs from
the analysis in [9]. In [9], we assumed that the determin-
istic knapsack problems (i.e., RA-KNAPs) can be solved
optimally. However, here we prove that the solution of
algorithm for CC-KNAP has the same approximation ratio
as the solution of the deterministic knapsack problem. This
provides us the flexibility to select any algorithm that solves

the deterministic knapsack problem as a subroutine for CC-
KNAP, based on the application. To make the paper self-
contained, we will now provide a brief description for solving
the CC-KNAP.

Let R denote the feasible region defined by the chance
constraint of CC-KNAP and Ri denote the intersection
region of R and the feasible region defined by the resource
constraint of RA-KNAP with λi (e.g., R2 in Fig. 2(a)). The
algorithm has two parts: find a feasible solution of CC-KNAP
by solving RA-KNAPs with increasing λ in (5) (line 1-6,
Alg. 1), search the rest of feasible region of CC-KNAP by
solving RA-KNAPs with methodically updated λ and W ′

(line 7-8, Alg. 1). The procedures are shown in Algorithm 1
and Algorithm 2.

The first part starts with solving RA-KNAP for λi = 0,
W ′i = Wk, where i = 1 is the index of the iteration
(line 1-2, Alg. 1). If the optimal solution of RA-KNAP
does not satisfy the chance constraint, in other words the
corresponding point is above the parabola, e.g. s1 in Fig. 2
(a), the algorithm computes the resource constraint of the
RA-KNAP for the next iteration by updating λ as λi+1 =

C/σi where σi =
√∑nt

j=1 σ
2
kjxkj (line 4, Alg. 1). From a

geometric viewpoint, on the variance-mean plane, the updat-
ing procedure can be treated as the straight line from RA-
KNAP’s constraint rotating clockwise at vertical intercept
(0, Wk). The new straight line is guaranteed to be located
below the previous point so that the previous solution will not
be obtained again. The procedure continues until we obtain a
feasible solution of CC-KNAP, e.g., s2 in shaded region R2

below the parabola in Fig. 2(a) (line 3-5, Alg. 1). The feasible
solution s2 is stored in the solution set S (line 6)∗. Now
we can conclude that the subset of feasible region of CC-
KNAP, R2 is dominated by s2, i.e., s2 = arg maxs∈R2

v(s)
(or αv(s2) ≥ maxs∈R2 v(s) if the solution of RA-KNAP is
α-approximate). Note that this procedure terminates in finite
number of iterations because λi increases as the algorithm
proceeds. The resource consumption of all tasks in RA-
KNAP thus increase while the resource capacity remains the
same. In the worst case, the resource consumption becomes
so large that the robot cannot perform any of the task. At
this moment, the first part of Alg. 1 terminates and S is an
empty set.

We then need to find the optimal (α-approximate) solution
of the rest of the feasible region using the second part of
Alg. 1, e.g., R\R2 in Fig. 2(a). We compute the intersection
point of parabola and the straight line of the last RA-KNAP’s
constraint, e.g., sa in Fig. 2. Further, we compute the point on
the parabola with horizontal coordinate σ2 =

∑nt

j=1 σ
2
kjxkj ,

e.g., sb in Fig. 2 (line 7, Alg. 1). Therefore the search region
is now limited to the space enclosed by the parabola from
sa to sb, vertical straight line through sb and the straight line
from the last RA-KNAP’s constraint (see Fig. 2(a)). Then the
algorithm calls a recursive function A(sa, sb,S) presented in

∗ Formally, S is the set of all solutions obtained from RA-KNAP that
satisfy the chance constraint. For ease of exposition, S also denotes the set
of indices (subscripts) of solution by abuse of notation.



Alg. 2. Let (σ2
a, µa) and (σ2

b , µb) be the coordinates of sa
and sb respectively. A(sa, sb,S) computes the equation of
the straight line through sa and sb, and then solves RA-
KNAP with λ and W ′ equal to the negation of the slope
and vertical intercept of the obtained straight line equation
respectively, i.e., λ = −µa−µb

σ2
a−σ2

b
and W ′ = µa + λσ2

a (line
1, Alg. 2). If the obtained solution sab = (σ2

ab, µab) does
not satisfy the chance constraint(e.g., s3 in Fig. 2(b)), we
compute the slope of a straight line through sa and sab,
i.e., µa−µab

σ2
a−σ2

ab
. Then we compute the point sc which is the

intersection of the parabola and a straight line through sa
with slope −(µa−µab

σ2
a−σ2

ab
+ ε) where ε is a small value that

prevent the cycling (line 2-3, Alg. 2). As shown in Fig. 2(b),
the current search region is thus covered by union of R4 and
R5. Then it calls itself with input (sa, sc,S) and (sc, sb,S).
When solution sab satisfies the chance constraint, sab is
stored in S and the recursive functionA(sa, sb,S) terminates.
sab dominates the corresponding intersection region, e.g, s4
dominates R4 in Fig. 2(b). When all recursive functions
terminate, we obtain a set of feasible solutions such that R is
covered by the union of intersection region corresponding to
those feasible solutions in S, i.e., R ⊆

⋃
i∈SRi. The optimal

(α-approximation) solution s̄∗ is the one with the highest
objective function value (line 9 in Alg. 1). The output is the
indices of tasks assigned to rk, denoted by J̄∗k .

Algorithm 1 Algorithm to solve CC-KNAP for rk

Input: Wk, p, µkj , σ
2
kj ∀j = 1, . . . , nt.

Output: J̄∗k .
1: Initialize i = 1, λi = 0, W ′i = Wk.
2: Solve RA-KNAP with λi, W ′i and obtain solution si.
3: while si does not satisfy the chance constraint do
4: Update risk-averse parameter λi+1 = C/σi and

capacity W ′i+1 = W ′i , and i = i+ 1.
5: Solve RA-KNAP with λi and W ′i , and obtain solu-

tion si.

6: Store solution si in set S.
7: Compute intersection point sa and sb.
8: Call recursive function A(sa, sb,S).
9: Compute the optimal objective value v̄∗ =

maxsi∈S v(si) and solution s̄∗ = arg maxsi∈S v(si).
10: return J̄∗k which contains all assigned tasks in s̄∗.

Lemma 2: If the solution of the RA-KNAP in (5) is
α-approximate, Algorithm 1 computes an α-approximate
solution to CC-KNAP.

Proof: Since the approximation ratio of the algorithm
that solves RA-KNAP is α and Ri is a subset of feasible
region defined by the resource constraint of RA-KNAP in (5),
any obtained solution from RA-KNAP that satisfies the
chance constraint, say si ∈ S is α-approximation in Ri.
Let v∗i be the optimal objective value in Ri. It is true that
αv(si) ≥ v∗i ,∀i ∈ S.

When Alg. 1 finishes, the union of Ri covers the whole
feasible region R, i.e., R ⊆

⋃
i∈SRi. Therefore, the optimal

Algorithm 2 Recursive function A(sa, sb,S)

Input: sa, sb,S.
Output: S.

1: Solve RA-KNAP (5) with λ = −µa−µb

σ2
a−σ2

b
and W ′ = µa+

λσ2
a.

2: if the solution sab = (σ2
ab, µab) does not satisfy the

chance constraint of CC-KNAP in (4) then
3: Compute the intersection point sc of parabola and

straight line through sa with slope −(µa−µab

σ2
a−σ2

ab
+ ε).

4: Call A(sa, sc,S) and then call A(sc, sb,S)
5: else
6: return S = {S, sab}.

solution of CC-KNAP denoted by s∗ must be in at least one
of the intersection region Ri. Let I denote the set of indices
of Ri which contain s∗ (I ⊂ S is a non-empty set). Since
Ri ⊂ R, v∗i = maxs∈Ri

v(s), v(s∗) = maxs∈R v(s) and
s∗ ∈ Ri,∀i ∈ I, it implies that v∗i = v(s∗),∀i ∈ I.

Because s̄∗, the solution of CC-KNAP obtained by Alg. 1
is the one with the highest objective value in S, it is clear
that v(s̄∗) ≥ v(si),∀i ∈ S.

Therefore we can conclude that αv(s̄∗) ≥ αv(si) ≥ v∗i =
v(s∗),∀i ∈ I. Since I is a non-empty set, the solution of
CC-KNAP obtained by Alg. 1 is α-approximate.

If RA-KNAP is solved optimally using dynamic program,
our algorithm provides the optimal solution of CC-KNAP.

B. Algorithm for CC-GAP

The algorithm for solving CC-GAP is presented in Al-
gorithm 3. The iterative procedure is executed by the robots
sequentially from r1 to rnr

(line 2-8). The initial payoff value
of CC-KNAP for r1 performing any task, 1a1j is equal to
a1j ,∀j. In any iteration k, CC-KNAP for rk with payoffs
{kakj}nt

j=1 is solved by Alg. 1. The solution is denoted by
J̄∗k which is the set for all assigned tasks for rk (line 3-4).
If any of the task say tu in the current solution has been
assigned to a robot with smaller index say rb, (b < k), this
task is removed from previous set J̄∗b (line 5-6). Hence each
task is assigned to at most one robot. Then the payoffs of
all tasks in J̄∗k to robots with greater indices are equal to
kaij − kakj ,∀i > k and ∀j ∈ J̄∗k . The payoffs of other
tasks remain the same (line 7). Then rk+1 executes the same
procedure with updated payoffs. Once the last robot rnr

finishes the procedure, the current assignment of robots to
tasks is the solution, i.e., {Ĵ∗i }

nr
i=1 (line 9-10).

Lemma 3: (Feasibility) The assignments for all robots
S obtained from our algorithm always satisfy the chance
constraints.

Proof: The initial assignment of any robot J̄∗k obtained
by solving CC-KNAP of rk satisfies the chance constraint.
Consider it as a point below the corresponding parabola on
variance-mean plane (see S̄1 in Fig. 1). During Alg. 3, the
assigned tasks for rk might be re-assigned to other robots.
The final assignment of rk, Ĵ∗k is a subset of J̄∗k . Therefore
the sum of the variances and means of the assigned tasks in



Algorithm 3 Algorithm to solve CC-GAP

Input: aij , Wi, µij , σ2
ij , p, ∀i = 1, ..., nr, j = 1, ..., nt.

Output: S.
1: Let initial payoff value 1aij = aij ,∀i = 1, ..., nr,∀j =

1, ..., nt.
2: for robot r1 to rnr

do
3: Solve CC-KNAP with payoffs value {kakj}nt

j=1 by
Alg. 1.

4: Obtain solution J̄∗k = {j|xkj = 1}.
5: if J̄∗k

⋂
{J̄∗i }

k−1
i=1 6= ∅ then

6: Remove all tu ∈ J̄∗k
⋂
{J̄∗i }

k−1
i=1 from original set.

7: Update k+1aij = kaij − kakj ,∀i > k and ∀j ∈ J̄∗k
(the payoffs for unassigned tasks remain the same).

8: k = k + 1.
9: Let Ĵ∗i = J̄∗i ,∀i = 1, ..., nr.

10: return S = {Ĵ∗i }
nr
i=1.

Ĵ∗k are smaller. It is clear that the point of the final assignment
must be on the southwest side of the initial assignment, e.g.,
Ŝ1 in Fig. 1. Hence the final assignment must be under the
corresponding parabola. This is true for all robots. Therefore
the final assignments {Ĵ∗i }

nr
i=1 satisfy the chance constraints.

Lemma 4: (Optimality) If the algorithm for CC-KNAP is
α-approximate, then the algorithm for CC-GAP is a (1+α)-
approximate.

Lemma 4 is proved by induction. The base case is that the
assignment of the last robot rnr

in the final solution of Alg. 3,
i.e, Ĵ∗nr

is (1+α)-approximation to the CC-GAP in which the
payoffs are equal to nraij and rnr is the only robot involved
(in other words, i = nr). This is true because the initial
assignment of rnr

obtained by solving CC-KNAP, i.e., J̄∗nr
,

is an α-approximation to the optimal solution of CC-KNAP,
which is equivalent to the considered CC-GAP and the initial
assignment of rnr , J̄∗nr

, is same with the final assignment
Ĵ∗nr

. Then we need to prove that the final assignment of
robots from rk to rnr (1 ≤ k < nr), i.e, {Ĵ∗i }

nr

i=k is (1+α)-
approximate to the CC-GAP in which the payoffs are equal
to kaij ,∀i = k, ..., nr,∀j = 1, ..., nr. If this is true, it implies

(1 + α)

nr∑
i=1

∑
j∈Ĵ∗

i

1aij ≥ max{
nr∑
i=1

nt∑
j=1

1aijxij} (6)

As shown in the first line of Alg. 3, 1aij = aij . Therefore
{Ĵ∗i }

nr
i=1 is (1 + α)-approximate to the original CC-GAP

in (2). The proof that {Ĵ∗i }
nr

i=k is (1 + α)-approximate is
similar to the deterministic GAP. We omit this proof here
due to space constraints and the fact that it is similar to the
proof in [2] for deterministic GAP. Please refer to [2] for a
detailed description.

V. SIMULATION RESULTS

The computational cost of our algorithm is
∑nr

i=1KiTi,
where Ki denotes the number of the deterministic knapsack
problems (RA-KNAP) (5) solved by ri, and Ti denotes the

20 40 60 80 100
0

100

200

300

400

0 50 100
0

5

10

15

20

25

Fig. 3: The scalability with the number of robots: (a) the total
number of deterministic knapsack problems solved by all
robots; (b) The number of deterministic knapsack problems
solved by each robot (with index from 1 to 100).

computational cost for solving the knapsack problem. We
use a pseudo-polynomial algorithm from [43] for solving the
knapsack problem. Thus, the computational cost for solving
one knapsack problem is O(n2iAi) where ni denotes the
number of tasks of the knapsack problem solved by ri and
Ai denotes the highest payoff, i.e., Ai = maxni

j=1
iaij .

Since our algorithm solves CC-GAP by solving a sequence
of deterministic knapsack problems, the key metrics for the
efficiency of our algorithm are the number of deterministic
knapsack problem solved by each robot, i.e., Ki and the
total number of the knapsack problems solved by all robots,
i.e.,

∑nr

i=1Ki. However these metrics are problem parameter
dependent and it is hard to provide a priori bounds. In this
section, we will study the dependence of these metrics on
the number of robots and tasks. Our extensive simulations
show that (a) the algorithm to solve CC-GAP is scalable with
the number of robots and tasks, and (b) the algorithm solves
chance-constrained knapsack problem by solving small num-
ber of deterministic knapsack problems.

The motivating scenario that we consider for this sim-
ulation study is that of multi-robot parts delivery in an
automated factory. A number of parts are located at a central
store. A robot has to pick up a part from the central store
and deliver it to a specific workstation for assembly. Each
robot obtains certain payoff for delivering parts successfully.
The payoffs aij are generated from a discrete uniform
distribution U(20, 100). The resource consumed by a robot
to deliver a part is the fuel cost for ri traveling from its
initial position to the central store and from the central store
to the work station of the assigned part. The parts may be
heterogeneous, (i.e., of different weights and values) and the
robots are also heterogeneous (i.e., have different weight
carrying capability), so the energy consumed depends on
the robot-task pair. The means, µij , and variances, σ2

ij , of
the random fuel cost are created from continuous uniform
distribution U(20, 100) and U(9, 36) respectively. Each robot
has limited fuel capacity. The capacity Wi for each robot is
generated from continuous uniform distribution U(350, 400).
The probability p that robots deliver parts successfully is
0.99. The simulations were done on a computer with Intel
i7 2.6 GHZ CPU and 16 GB RAM.



200 300 400 500
150

200

250

300

0 10 20 30 40 50
0

10

20

30

Fig. 4: The scalability with the number of tasks: (a) the total
number of deterministic knapsack problems solved by all
robots; (b) the number of deterministic knapsack problems
solved by each robot (with index from 1 to 50).

Scalability with number of robots: In the first set of
simulations, we study the scalability of our algorithm with
the number of robots, which are varied from 10 to 100
with increment of 10. The number of tasks is always 4
times of the number of robots. The results are presented
in Fig. 3(a). For a fixed number of robots, we create 100
problem instances with randomly generated parameters, and
compute both average and maximum number of deterministic
knapsack problems solved by all robots (i.e.,

∑nr

i=1Ki)
over these instances. It is shown that both the average and
the maximum number of deterministic knapsack problems
solved grow almost linearly.

Since our algorithm is sequential, the position of a robot
in the sequence, may affect the number of calls to the
deterministic knapsack problem. We use the index of a robot
for its position in the sequence. For example, the robot with
index 1 is the first robot to solve the problem (4). To study
the influence of the index of the robots, we present the
average and maximum number of knapsack problems solved
by each robot (i.e., Ki,∀i). The results are computed from
the same 100 instances with 100 robots used in Fig. 3(a). The
results are shown in Fig. 3(b), in which the horizontal axis
represents the index of each robot. It shows that robots with
larger indices solve lesser number of knapsack problems.
The reason is that the chance-constrained knapsack problem
for a robot with larger index is simpler than the problems
solved before. In particular, the payoffs become smaller in
general and some of the payoffs could be negative (the task
in this case can be ignored). More importantly, Fig. 3(b)
shows that the number of knapsack problems solved by each
robot is small (less than 23 for all scenarios). We also study
the number of knapsack problems solved by a single robot
with particular index as the number of robots increases (i.e.,
Ki, i ∈ {1, ..., 10} as nr increases). The results for different
robots show that the number of problems solved grows
linearly. It implies that our algorithm that solve chance-
constrained knapsack problem is scalable with the number
of robots. For reference, the average and maximum actual
running time of the simulations are provided in Fig. 5(a).

Scalability with number of tasks: In the second set of
simulations, we study the scalability of our algorithm with

20 40 60 80 100
0

10

20

30

40

50

200 300 400 500
0

50

100

150

200

Fig. 5: The actual running time (in seconds) as a function of
(a) number of robots (first set of simulations) and (b) number
of tasks (second set of simulations).

the number of tasks. The number of robots is 50 while the
number of tasks vary from 200 to 500 with increment of
50. The results are presented in Fig. 4(a). Similar to the
first set of simulations, for a given number of tasks, the
average and maximum number of deterministic knapsack
problems solved by all robots (i.e.,

∑nr

i=1Ki) are computed
from 100 randomly generated scenarios. Generally speaking,
the average and maximum number of knapsack problems
solved increases linearly. In Fig 4(b), we present the average
and maximum number of knapsack problems solved by
each robot (i.e., Ki,∀i). The results are computed from
100 randomly generated scenarios with 500 tasks used in
Fig. 4(a). The horizontal axis represents the index of robot.
As before, it shows that the robots with larger index tend
to solve smaller number of knapsack problems. The number
of knapsack problems solved by a single robot is no greater
than 30. Further, we study the number of knapsack problems
solved by a single robot with particular index as the number
of tasks increase (i.e., Ki, i ∈ {1, ...50} as nt increase). For
example, the number of problems solved by r1 increases
almost linearly from 4.5 to 7.5. The numbers for other robots
are smaller than r1 and increase in a similar manner to ri.
It implies that the algorithm that solves chance-constrained
knapsack problem is scalable with the number of tasks. The
actual running time of the simulations is shown in Fig. 5(b).

VI. CONCLUSION

In this paper, we present an algorithm to solve the gen-
eralized assignment problem with stochastic resource con-
sumption. We formulate the problem as a chance-constrained
combinatorial optimization problem, called CC-GAP. We
propose an algorithm that solves CC-GAP by solving a
closely related sub-problem, CC-KNAP, for each individual
robot. Assuming that the random resource consumption fol-
lows a Gaussian distribution, we presented an α-approximate
solution for CC-KNAP with α being the approximation
ratio for solving a deterministic knapsack problem. The
obtained solution for CC-KNAP is optimal if RA-KNAP is
solved optimally. Further, we prove that our algorithm for
computing CC-GAP is (1 + α)-approximate when we use
an α-approximation algorithm for CC-KNAP for each robot.
Thus, the best approximation ratio of our algorithm is 2. We



prove that our solution always satisfies the chance constraint.
The simulation results demonstrate that our algorithm is
scalable with the number of robots and tasks. In the future,
we would like to study the distributed implementation and
the theoretical computational complexity of our algorithm.

REFERENCES

[1] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA, USA: Society for Industrial and Applied Mathemat-
ics, 2009.

[2] R. Cohen, L. Katzir, and D. Raz, “An efficient approximation for the
generalized assignment problem,” Information Processing Letters, vol.
100, pp. 162–166, 2006.

[3] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithm design
for multi-robot generalized task assignment problem,” in Proceedings
of International Conference on Intelligent Robots and Systems (IROS),
Tokyo, Japan, November 2013.

[4] G. Ross and R. Soland, “A branch and bound algorithm for the
generalized assignment problem,” Mathematical Programming, vol. 8,
pp. 91–103, 12 1975.

[5] M. Savelsbergh, “A branch-and-price algorithm for the generalized
assignment problem,” Operations Research, vol. 45, pp. 831–841, 12
1997.

[6] D. Shmoys and . Tardos, “Approximation algorithm for the generalized
assignment problem,” Math. Program., vol. 62, pp. 461–474, 02 1993.

[7] C. Chekuri and S. Khanna, “A ptas for the multiple knapsack problem,”
Proc. of SODA, pp. 213–222, 09 2001.

[8] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko,
“Tight approximation algorithms for maximum general assignment
problems,” in Proc. of ACM-SIAM SODA, 2006, pp. 611–620.

[9] F. Yang and N. Chakraborty, “Algorithm for optimal chance con-
strained knapsack problem with applications to multi-robot teaming,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA), May 2018, pp. 1043–1049.

[10] L. Luo, N. Chakraborty, and K. Sycara, “Provably-good distributed
algorithm for constrained multi-robot task assignment for grouped
tasks,” IEEE Transactions on Robotics, vol. 31, no. 1, pp. 19–30, Feb
2015.

[11] M. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-
robot routing,” in Robotics Science and Systems, 2005.

[12] C. Bererton, G. Gordon, S. Thrun, and P. Khosla, “Auction mechanism
design for multi-robot coordination,” in NIPS, 2003.

[13] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257 –1270, jul. 2006.

[14] H.-L. Choi, L. Brunet, and J. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[15] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE
Transactions on Automation Science and Engineering, vol. 12, no. 3,
pp. 876–888, July 2015.

[16] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[17] A. R. Mosteo and L. Montano, “A survey of multi-robot task allo-
cation,” Instituto de Investigacin en Ingeniera de Aragn (I3A), Tech.
Rep., 2010.

[18] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics
and Autonomous Systems, vol. 90, pp. 55–70, 2017, special Issue on
New Research Frontiers for Intelligent Autonomous Systems.

[19] C. Nam and D. A. Shell, “Analyzing the sensitivity of the optimal
assignment in probabilistic multi-robot task allocation,” IEEE Robotics
and Automation Letters, vol. 2, no. 1, pp. 193–200, Jan 2017.

[20] A. Prorok, “Redundant robot assignment on graphs with uncertain
edge costs,” in Distributed Autonomous Robotic Systems. Springer
International Publishing, 2019, pp. 313–327.

[21] S. S. Ponda, L. B. Johnson, and J. P. How, “Distributed chance-
constrained task allocation for autonomous multi-agent teams,” in
American Control Conference (ACC), June 2012.

[22] ——, “Risk allocation strategies for distributed chance-constrained
task allocation,” in American Control Conference (ACC), June 2013.

[23] F. Yang and N. Chakraborty, “Algorithm for optimal chance con-
strained linear assignment,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), May 2017, pp. 801–808.

[24] L. Zhou and P. Tokekar, “An approximation algorithm for risk-averse
submodular optimization,” in 2018 International Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2018.

[25] F. Yang and N. Chakraborty, “Chance constrained simultaneous path
planning and task assignment for multiple robots with stochastic
path costs,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[26] M. Albareda-Sambola and E. Fernández, “The stochastic generalised
assignment problem with bernoulli demands,” Top, vol. 8, no. 2, pp.
165–190, Dec 2000.

[27] M. Albareda-Sambola, M. H. van der Vlerk, and E. Fernndez, “Exact
solutions to a class of stochastic generalized assignment problems,”
European Journal of Operational Research, vol. 173, no. 2, pp. 465–
487, 2006.

[28] D. R. Spoerl and R. K. Wood, “A stochastic generalized assignment
problem,” Department of Operations Research, Naval Postgraduate
School Monterey, California 93943, USA, Tech. Rep., January 2004.

[29] B. Toktas, J. W. Yen, and Z. B. Zabinsky, “Addressing capacity
uncertainty in resource-constrained assignment problems,” Computers
and Operations Research, vol. 33, no. 3, pp. 724–745, Mar. 2006.

[30] S. Alaei, M. Hajiaghayi, and V. Liaghat, “The online stochastic
generalized assignment problem,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 11–25.

[31] R. L. Carraway, R. L. Schmidt, and L. R. Weatherford, “An algorithm
for maximizing target achievement in the stochastic knapsack problem
with normal returns,” Naval Research Logistics (NRL), vol. 40, no. 2,
pp. 161–173, 1993.

[32] M. I. Henig, “Risk criteria in a stochastic knapsack problem,” Oper-
ations Research, vol. 38, no. 5, pp. 820–825, 1990.

[33] M. Sniedovich, “Preference order stochastic knapsack problems:
Methodological issues,” The Journal of the Operational Research
Society, vol. 31, no. 11, pp. 1025–1032, 1980.

[34] A. J. Kleywegt and J. D. Papastavrou, “The dynamic and stochastic
knapsack problem,” Operations Research, vol. 46, no. 1, pp. 17–35,
1998.

[35] B. C. Dean, M. X. Goemans, and J. Vondrk, “Approximating the
stochastic knapsack problem: The benefit of adaptivity,” Mathematics
of Operations Research, vol. 33, no. 4, pp. 945–964, 2008.

[36] A. Bhalgat, A. Goel, and S. Khanna, “Improved approximation results
for stochastic knapsack problems,” in Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms. USA:
Society for Industrial and Applied Mathematics, 2011, pp. 1647–1665.

[37] J. Kleinberg, Y. Rabani, and E. Tardos, “Allocating bandwidth for
bursty connections,” in Proceedings of the Twenty-ninth Annual ACM
Symposium on Theory of Computing, ser. STOC ’97. New York, NY,
USA: ACM, 1997, pp. 664–673.

[38] A. Goel and P. Indyk, “Stochastic load balancing and related prob-
lems,” in 40th Annual Symposium on Foundations of Computer Sci-
ence, Oct 1999, pp. 579–586.

[39] V. Goyal and R. Ravi, “A ptas for the chance-constrained knap-
sack problem with random item sizes,” Operations Research Letters,
vol. 38, no. 3, pp. 161–164, 2010.

[40] A. De, “Boolean function analysis meets stochastic optimization: An
approximation scheme for stochastic knapsack,” in Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
2018, pp. 1286–1305.

[41] G. Shabtai, D. Raz, and Y. Shavitt, “A Relaxed FPTAS for Chance-
Constrained Knapsack,” in 29th International Symposium on Algo-
rithms and Computation (ISAAC 2018), vol. 123, Dagstuhl, Germany,
2018, pp. 72:1–72:12.

[42] E. Nikolova, “Approximation algorithms for reliable stochastic com-
binatorial optimization,” in Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 338–351.

[43] K. Lai and M. Goemans, “The knapsack problem and fully polynomial
time approximation schemes,” Massachusetts Institute of Technology,
Department of Mathematics, Tech. Rep., 3 2006.


