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Introduction Chance-constrained shortest path Algorithm for CC-shortest path
Given: * CC-shortest path problem for a robot-task pair (7, t;) 1. Solve a sequence of deterministic shortest path problems with
+ Initial positions of robots s; and tasks ¢;: min y, methoilllcally Increasing A (starting fro_m 0). T_he upd_atlng rule Is
b S i 4O [ 0w <, Ax+1 = C/ox. The upper bound for optimal 4 1s obtained once
- Agraph G(V, E) that captures the collision-free configuration L M e T [ 2 T e = 2 Aoy = C.
space of the robots with respect to static obstacles; S iy 3 i = { fL ﬁ o 2 2. Search for the optimal A* by enumerating the extreme points in
« Means ‘u,, and variances ‘o2, of uncertain travel cost ‘c,, vEN (u) VEN (u) 0, VueV\{sit;} the obtained search region by solving a sequence of
of any robot r; moving on any edge e, on graph. uw € {0, 1} deterministic problems with A generated by computing the slope
+  The solution is a path for r; from the source to task of lines connecting any consecutive obtained points.
Compute: y ; _
| t; whose cost for path should be less than cost value “y; with
* Assignment of robots to tasks z;; and paths to reach the tasks probability at p irrespective of the travel cost realizations. Let _ _
{ ") ; the optimal 'y; be I;; = 'y;*. Simulation results
* Minimize a cost value y such that cost of every robot is less » The first constraint is equivalent to the chance constraint in (1)
than y with high probability p in any realization of ‘c,,,. Wi by, C = ® 1(p)i _ . - .
Y P ypnany Fuv for r; with cost value equal to "y;. C = @"(p) I the random » We perform simulations to study the scalability of our algorithm
travel cost is Gaussian. C = /& for case where the probability to the number of the robots (Fig. 3) and the size of the graph
S (Fig. 4). We count the total number of the deterministic
distribution Is unknown. oroblems solved for a STAP which influences the efficiency.

» The average and maximum number are computed from 100
scenarios with randomly generated means, variances (Fig.3, Fig. 4)
and graphs (Fig. 4).

Linear bottleneck assignment

« An approximate solution obtained from the first step of the

The assignment in (1) can be obtained by solving a LBAP. algorithm is also studied. In Fig. 3 the approximate solution is
min max; Y £i;%; greater than the optimal solution by at most 0.22% and 0.19%
1 19~1)
J

In Fig. 3 and Fig. 4 respectively.

Fig. 1. Simultaneous task allocation and path planning for St zp =1, 2 =1, z; €{0,1} Vi,j. (3)
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robots with stochastic travel costs.
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« The constraints are same as the assignment constraints in (1)
that ensure each robot performs a unique task.

—
]
o
o

1000

* [;; I1s equal to the optimal objective of (2) for pair (73, t;)
800

Problem formulation

* This is a well-studied problem which can be solved by threshold ol

The number of deterministic shortest path problem

algorithm once [;; are computed.
Chance-constrained simultaneous task assignment and planning 400 |
problem (CC-STAP).
200 |
min y - - - B
- Geometric interpretation of CC-SP D , ,
st P Cun T <Y | >p, i=1,.... n. 5 10 15 20
” (; ; y) b 1 ’ The number of robots
| | L, if u = s, * Any path Is a point on a 2D variance-mean plane where x-axis, _ o _
vEN (u) vEN (u) 0,  VueV\isit} the path respect to the number of robots.
1 =1,....n. P '
n n _ _ _ _ _ n 120
Sa=19 S s =1, Vi « The optimal path Is an extreme point of feasible point set. ; ~ Average number for exact soluion
_izl j=1 % 110 Average number for approximate solution | |
Z«Tuv c {U, 1}j 2] c {0’ 1}_ ﬁf | |— — — Maximum number for approximate solution | | |
. . . ? 100 1| =~ _
* The solution includes both assignment z;; and path to reach the S L Y, / A
assignment ‘x,,,,. Every robot should be assigned to a unique s o -
task and compute a path from source s; to its task. 2 sl AN
* Chance constraints provide a probabilistic quality guarantee, 2 ol EVASEEDN .
which ensures that the travel cost for any robot Is less than y P N NS TN s /
_ . E i Y . o — 1 —]
with probability at least p. n o
e T S
* This problem iIs a non-convex integer optimization problem - 50 - - - " - -
Wthq |S dlﬁlCUIt to SOIVe dlreCtIy ;—2 The number of nodes in the graph
Fig. 2. Variance-mean plane. Each feasible path Fig. 4. The deterministic problems solved with
IS treated as a point and the optimal path Is an respect to the number of nodes in graph.

C()ntri buti()ns extreme point of the solution set.

The optimal CC-SP solution is also optimal for a deterministic

_ _ shortest path problem with certain value of 4. The edge cost Is a Conclusion
* We prove that the problem can be solved by solving multiple linear combination of mean and variance of random cost.
related subproblems: chance-constrained shortest path problems
(CC-shortest path) for all robot-task pairs, linear bottleneck min Y (“pruw +A'02,) Too
assignment problem (LBAP). | « \We formulate a CC-STAP that consider both task allocation and
| i T L - (4) path planning with the stochastic variables.
» \We develop a novel two-step algorithm for CC-STAP that > %: v %: T 0 Veev fs i)
| T | " » CC-STAP can be decomposed into a set of CC-shortest path
1. Solves CC-shortest path problems for all robot-task pairs. tuo € 40,13 oroblems and a LBAP.
2. Solve LBAP with [;; equal to the optimal objective of CC- « The problem becomes a one-dimensional search on risk-averse « CC-shortest path problem can be solved by solving a sequence
shortest path for robot r; to task ¢;. parameter A. of deterministic shortest path problems.
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