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Fig. 1. Simultaneous task allocation and path planning for 

robots with stochastic travel costs. 

Chance-constrained simultaneous task assignment and planning 

problem (CC-STAP).

• The solution includes both assignment 𝑧𝑖𝑗 and path to reach the 

assignment 𝑖𝑥𝑢𝑣. Every robot should be assigned to a unique 

task and compute a path from source 𝑠𝑖 to its task. 

• Chance constraints provide a probabilistic quality guarantee, 

which ensures that the travel cost for any robot is less than 𝑦
with probability at least 𝑝. 

• This problem is a non-convex integer optimization problem 

which is difficult to solve directly. 

Problem formulation

(1)

• We prove that the problem can be solved by solving multiple 

related subproblems: chance-constrained shortest path problems 

(CC-shortest path) for all robot-task pairs, linear bottleneck 

assignment problem (LBAP).

• We develop a novel two-step algorithm for CC-STAP that

1. Solves CC-shortest path problems for all robot-task pairs.

2. Solve LBAP with 𝑙𝑖𝑗 equal to the optimal objective of CC-

shortest path for robot 𝑟𝑖 to task 𝑡𝑗.

Contributions

• Any path is a point on a 2D variance-mean plane where x-axis, 

y-axis represent the sum of variances and means of the edges in 

the path. 

• The optimal path is an extreme point of feasible point set.

The optimal CC-SP solution is also optimal for a deterministic 

shortest path problem with certain value of 𝜆. The edge cost is a 

linear combination of mean and variance of random cost.

• The problem becomes a one-dimensional search on risk-averse 

parameter 𝜆. 

Geometric interpretation of CC-SP

Fig. 2. Variance-mean plane. Each feasible path 

is treated as a point and the optimal path is an 

extreme point of the solution set.

1. Solve a sequence of deterministic shortest path problems with 

methodically increasing 𝜆 (starting from 0). The updating rule is 

𝜆𝑘+1 = Τ𝐶 𝜎𝑘. The upper bound for optimal 𝜆 is obtained once 

𝜆𝑘𝜎𝑘 = 𝐶.

2. Search for the optimal 𝜆∗ by enumerating the extreme points in 

the obtained search region by solving a sequence of 

deterministic problems with 𝜆 generated by computing the slope 

of lines connecting any consecutive obtained points.

Algorithm for CC-shortest path

• We perform simulations to study the scalability of our algorithm 

to the number of the robots (Fig. 3) and the size of the graph 

(Fig. 4).  We count the total number of the deterministic 

problems solved for a STAP which influences the efficiency.

➢ The average and maximum number are computed from 100 

scenarios with randomly generated means, variances (Fig.3, Fig. 4) 

and graphs (Fig. 4).

• An approximate solution obtained from the first step of the 

algorithm is also studied. In Fig. 3 the approximate solution is 

greater than the optimal solution by at most 0.22% and 0.19%
in Fig. 3 and Fig. 4 respectively.

Simulation results

Fig. 3. The deterministic problems solved with 

respect to the number of robots. 

Fig. 4. The deterministic problems solved with 

respect to the number of nodes in graph. 

• We formulate a CC-STAP that consider both task allocation and 

path planning with the stochastic variables.

• CC-STAP can be decomposed into a set of CC-shortest path 

problems and a LBAP.

• CC-shortest path problem can be solved by solving a sequence 

of deterministic shortest path problems. 

Conclusion

Given:

• Initial positions of robots 𝑠𝑖 and tasks 𝑡𝑖;

• A graph 𝐺(𝑉, 𝐸) that captures the collision-free configuration 

space of the robots with respect to static obstacles; 

• Means 𝑖𝜇𝑢𝑣 and variances 𝑖𝜎𝑢𝑣
2 of uncertain travel cost 𝑖𝑐𝑢𝑣

of any robot 𝑟𝑖 moving on any edge 𝑒𝑢𝑣 on graph.

Compute:

• Assignment of robots to tasks 𝑧𝑖𝑗 and paths to reach the tasks 

{ 𝑖𝑥𝑢𝑣} ;

• Minimize a cost value 𝑦 such that cost of every robot is less 

than 𝑦 with high probability 𝑝 in any realization of 𝑖𝑐𝑢𝑣. 

Introduction

• CC-shortest path problem for a robot-task pair (𝑟𝑖 , 𝑡𝑗)

• The solution is a path for 𝑟𝑖 from the source to task 

𝑡𝑗 whose cost for path should be less than cost value 𝑖𝑦𝑗 with 

probability at 𝑝 irrespective of the travel cost realizations. Let 

the optimal 𝑖𝑦𝑗 be 𝑙𝑖𝑗 = 𝑖𝑦𝑗*.

• The first constraint is equivalent to the chance constraint in (1) 

for 𝑟𝑖 with cost value equal to 𝑖𝑦𝑗. 𝐶 = Φ−1(𝑝) if the random 

travel cost is Gaussian. 𝐶 = 𝑝

1−𝑝
for case where the probability 

distribution is unknown.

Chance-constrained shortest path

(2)

• The assignment in (1) can be obtained by solving a LBAP.

• The constraints are same as the assignment constraints in (1) 

that ensure each robot performs a unique task.

• 𝑙𝑖𝑗 is equal to the optimal objective of (2) for pair (𝑟𝑖 , 𝑡𝑗)

• This is a well-studied problem which can be solved by threshold 

algorithm once 𝑙𝑖𝑗 are computed.

Linear bottleneck assignment 

(3)

(4)


