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I. INTRODUCTION

Multi-robot task allocation problems where robots have to
move to target destinations arises in a number of applications
including search and rescue, goods or parts transfer in
warehouses. The problem of task allocation, i.e., allocation
of robots to target destinations is coupled with the problem
of computing a path for the robots to the destination. We
consider a situation, where there are static obstacles as well
as dynamic obstacles in the environment. We assume that
each robot is equipped with a local reactive collision detector
and planner to avoid collision with dynamic obstacles. There
could be multiple paths that may be available between a
robot-destination pair [7]. The cost of travel (like energy
consumed, time taken, etc.) is non-deterministic because the
robot may have to slow down or stop to avoid moving
obstacles.

In this paper, we present a novel algorithm for multiple
robot task allocation problems where the robots have to
simultaneously plan paths and select target destinations under
uncertainty about the travel costs. We assume that the robots
move on a graph, e.g., an actual road network or a roadmap,
which captures the collision-free configuration space of the
robots [3], [4], [2] with respect to static obstacles. We assume
that the cost of each edge of the graph is an independent
random variable with known mean and variance. Thus, the
cost of any path between a robot-destination pair will be a
random variable. Our goal is to simultaneously compute the
assignment of tasks (targets) to robots as well as paths to
reach the tasks and a minimum cost value (say y) such that
we have a guarantee that the cost of every robot’s path will
be less than y with high probability (say 0.95) under any
realization of the random costs. Such a solution provides a
quality guarantee (albeit probabilistic) on the solution of the
simultaneous task assignment and planning (STAP) problem
in the presence of uncertainty about the task execution costs.

II. CHANCE-CONSTRAINED STAP

We model the stochastic STAP problem as a chance-
constrained simultaneous task assignment and planning (CC-
STAP) problem. Let G = (V,E) be the graph representing
the roadmap, with |V | = N , and let there be n robots and
destinations (or tasks). Let (u, v), u, v ∈ V denote an edge.
Let icuv be the random cost for robot ri going through edge
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(u, v). We assume that the mean and variance for random
cost are known. Let ixuv be a binary decision variable which
is equal to 1 when edge (u, v) is included in the path for
ri and 0 otherwise. Each robot, ri, is initially at a given
position si ∈ V and each task tj ∈ V , is located at given
position. Let zij = 1 if robot ri is assigned to task tj and
0 otherwise. Define V ′ = V \ {si, tj}. The integer program
formulation for the CC-STAP problem is

min y

s.t. P

(
N∑

u=1

N∑
v=1

icuv
ixuv ≤ y

)
≥ p, i = 1, . . . , n.

∑
v∈N (u)

ixuv −
∑

v∈N (u)

ixvu =

 1, if u = si,
−zij , if u = tj ,
0, ∀u ∈ V ′,

i = 1, . . . , n.
n∑

i=1

zij = 1, ∀j;
n∑

j=1

zij = 1, ∀i.

ixuv ∈ {0, 1}, zij ∈ {0, 1}.

(1)

where N (u) ⊂ V denote the neighbors of node u. The third
set of constraints represent that each robot is assigned to
one task and each task is assigned to one robot. The second
constraint ensures that each robot selects a simple path to
its assigned task. The total cost of the path for each robot
in any realization is less than a value y with at least a pre-
specified probability p (chance constraints in Equation (1)).
The objective is to minimize the value y on the cost for
all paths. Note that the technical challenge in solving the
problem above directly is that it is an integer nonlinear
optimization problem where the nonlinearity arises due to
the chance constraints. The key contribution of this work
is to prove that the optimal solution to CC-STAP can be
obtained by solving two related sub-problems, namely, (a)
chance-constrained shortest path (CC-SP) problem between
all robot-task pairs and (b) linear bottleneck assignment
problem (LBAP) formed from the outputs of the CC-SP
problems. This observation provides the recipe for a two-
step algorithm described in Section III.

A. Chance-constrained shortest path problem

The CC-SP for a robot-task pair, i.e., (si, tj) is: given a
graph where the means and variances of random edge cost
( iµuv and iσ2

uv) are known, compute a path with minimum
value iyj such that the actual path cost in any realization
is no greater than iyj with a pre-specified probability p. Let
the feasible set corresponding to the second constraint in
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Equation (1), with zij = 1 be denoted by X1. The CC-SP
for ri going to tj is

min iyj

s.t.
∑
u,v

iµuv
ixuv +C

√∑
u,v

iσ2
uv

ixuv ≤ iyj

ixuv ∈ X1

(2)

The first constraint is equivalent to the chance constraint
in (1) for ri. It ensures that the path cost for ri going to
tj in any realization is no greater than a value iyj with at
least a pre-specified probability p. If the distribution of the
random costs are Gaussian, C = Φ−1(p), where Φ−1(p)
is the inverse cumulative distribution function of a standard
Gaussian. If we know only the mean and the variance of the
distribution, C =

√
p

1−p . The objective is to find such path

with the smallest iyj .

B. Linear bottleneck assignment problem

Let `ij be the cost of assigning ri to tj , which is the
optimal objective value of the problem (2) for ri to tj , i.e.,
`ij = min iyj . The LBAP is: given cost of the assignment
`ij , assign each robot to a unique task such that the maximum
cost of robot-task pair among the assignment is minimized.

min maxi

∑
j

`ijzij

s.t.
∑
i

zij = 1,
∑
j

zij = 1, zij ∈ {0, 1} ∀i, j.
(3)

where zij is as defined in (1). The constraints guarantee
that each robot-task assignment is unique. As `ij is obtained
from (2), a feasible solution in problem (3) also satisfies the
chance constraint and X1. Therefore the feasible solution of
problem (3) is feasible to problem (1) and vice versa. We
further proved that the objective in problem (3) is equivalent
to objective in (1). Therefore CC-STAP can solved by two
sub-problems: CC-SP and LBAP.

III. SOLUTION ALGORITHM AND RESULTS

We use a two-step approach to solve the CC-STAP prob-
lem optimally. First, we formulate and solve CC-SP problems
for each robot-task pair. Second, we use the optimal solutions
for each CC-SP to formulate and solve the LBAP. LBAP can
be solved by existing algorithms like threshold algorithm [1].
The key challenge is in solving the CC-SP problem for which
we present a novel approach.

The solution space of the CC-SP problem can be geometri-
cally analyzed on a two-dimensional space called variance-
mean plane [8], [9]. To see this, note that for each path,
we can associate a point with coordinates (σ2, µ) where
µ =

∑
u,v

iµuv
ixuv and σ2 =

∑
u,v

iσ2
uv

ixuv . Thus
all possible paths between a source destination pair can
be represented as points in the mean-variance plane. The
optimal solution to CC-SP is a vertex of the convex hull
of this point set. However, enumerating all the points in
the point set is computationally expensive. Nevertheless,
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Fig. 1. Number of deterministic problems solved as the number of robots
increase. The average and maximum is computed over 100 scenarios.

using the geometric insight, we prove that the solution
to problem (2) can be solved by solving a sequence of
parameterized optimization problems given below:

min
∑
u,v

( iµuv +λ iσ2
uv) ixuv s.t. ixuv ∈ X1, ∀i (4)

where λ is called the risk-aversion parameter. For any value
of λ, the solution to problem (4), gives an extreme point
(i.e., a vertex on the convex hull) on the mean-variance plane.
The problem (2), thus, becomes a one-dimensional search on
risk-averse parameter λ. Instead of enumerating all extreme
points [6], [5], we first compute an upper bound of λ and
then compute the extreme points by solving problem (4)
with different value of λ within the obtained interval. The
algorithmic steps and proof of correctness are analogous to
our previous work on stochastic linear assignment [8].

The computational cost of our algorithm is n2KT1 + T2
where n is the number of robots (tasks), K is the number
of the deterministic shortest path problems solved, T1 and
T2 are the computation cost for solving a deterministic
shortest path problem, and a linear bottleneck assignment
problem respectively. The main parameter that we do not
know theoretically is the dependence of K on the number of
nodes in the graph, N or the number of robots, n. Therefore,
we perform simulations based on randomly generated data
to study the dependence of K on n and N . Figure 1 shows
the number of deterministic problems, i.e., n2K solved
as a function of the number of robots n. The quadratic
dependence suggests that K is independent of n.

IV. CONCLUSION

We presented a novel algorithm to solve CC-STAP opti-
mally. To the best of our knowledge, there are no available
algorithms with theoretical guarantees on solution quality on
stochastic STAP. Our approach is able to compute an exact
solution (assuming the random edge costs are independent
and Gaussian) and is more efficient than other related algo-
rithm mentioned in [5]. The simulation results demonstrate
that our algorithm is scalable with the number of robots as
well as the size (i.e., number of nodes) of the road network.
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