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Introduction
Multi-robot team formation under uncertain 
environment arises in a wide variety of 
application scenarios like patrolling, 
automated transport of goods, 
environmental monitoring and surveillance.

We consider a pipeline surveillance problem 
with a team of quadrotors (see Fig.1). Given a 
route of a pipeline with known distance (𝐿 in 
Eq.1) and a set of quadrotors with different 
operation cost (𝑐𝑖 in Eq.1) and ability of 
travelling (𝑙𝑖 in Eq.1) which is random 
variable, we need to form a team of 
quadrotors from the given set to detect 
leakage such that in any realization the 
quadrotor team covers the pipeline with at 
least a pre-specified probability while the 
overall operation cost is minimized. 

Problem Formulation
This problem is a chance-constrained 
knapsack problem (CC-KAP):

• The solution is a vector where each entry 
𝑓𝑖 is a binary decision variable indicating 
that a robot is selected when 𝑓𝑖 = 1. 

• The chance constraint guarantees that 
under any realization of the random travel 
distance, the selected team covers the 
route with at least a pre-specified 
probability 𝑝.

• The chance constraint is equivalent to a 
deterministic constraint

σ𝑖 𝜇𝑖𝑓𝑖 − 𝐶 σ𝑖 𝜎𝑖
2𝑓𝑖 ≥ 𝐿 where 𝐶 is a 

constant determined by 𝑝. 

To solve CC-KAP, we solve a sequence of 
deterministic problems, called risk-averse 
knapsack problem (RA-KAP).

This problem is essentially a deterministic 0-1 
knapsack problem where the travel distances 
of robots are linear combinations of means 

(𝜇𝑖) and variances (𝜎𝑖
2), 𝜆 is risk-averse 

parameter and the route length is 𝐿′.

Geometric Interpretation
• The problem is analyzed on a 2D variance-

mean plane (see Fig.2) where x-axis, y-axis 
represent the sum of variances and means 
of the selected robots respectively.

• Any robot team can be represented as a 
point on variance-mean plane. 

• The optimal solution is the point in the 
non-convex feasible region (above blue 
parabola in Fig.2a) with the highest 
objective value.

• The optimal solution of CC-KAP is the 
optimal solution of a RA-KAP with 
appropriate choice of (𝜆, 𝐿′).

• Thus, the problem is converted to a two-
dimensional search (𝜆, 𝐿′) on variance-
mean plane.

Algorithm
We develop a two-step algorithm to solve the 
CC-KAP optimally:
1. Solve a sequence of RA-KAPs by 

methodically increasing 𝜆 that controls 
the slope of the straight line until the 
optimal solution of  a RA-KAP (𝑠2 in Fig. 
2a) is feasible to CC-KAP. 

2. Solve RA-KAPs by methodically changing 
parameters (𝜆, 𝐿′) that control the slope 
and y-intercept of the straight line. If the 
optimal solution of a RA-KAP is feasible to 
CC-KAP, we obtain a solution that is

optimal in the intersection of feasible regions 
of CC-KAP and RA-KAP, e.g., ℛ4, ℛ5 in Fig.2b.
The procedure terminates when the          
intersection regions corresponding to those 
feasible solutions, e.g., ℛ4, ℛ5, cover the 
remaining feasible region of CC-KAP at the 
end of the first step, i.e., ℛ\ℛ2, in Fig.2a.

Simulation Results
Simulations are performed based on 
randomly generated means and variances for 
travel distance capacity of each robot. We 
count the number of RA-KAPs solved which 
influences the efficiency and scalability of our 
algorithm. 
• Fig. 3 shows the scalability of our 

algorithm as a function of the number of 
robots varying from 10 to 100. The results 
shown are obtained from 100 randomly 
generated scenarios. 
➢ The average numbers of RA-KAP solved is 

constant (< 3) irrespective of the number of 
robots while the maximum number is at 
most 7 (see Fig.3). 

• Our algorithm is scalable with the number 
of robots or variances of travel distances 
(not shown in poster).

Conclusion
• We present a novel approach that uses 

the solutions of a small number of 
deterministic RA-KAPs to solve a multi-
robot team formation problem optimally. 

• We analyze the relationship between CC-
KAP and RA-KAP on variance-mean plane.  
The geometric insight is helpful for solving 
other problems with chance constraint.

• We present simulation results showing 
that our method is efficient and scalable 
with the number of robots and the 
uncertainty inn travel distance capacity.

Acknowledgements
This work was supported in part by AFOSR 
award FA9550-15-1-0442.

Fig. 3. For a given number of robots (varying from 

10 to 100), the average and maximum number of  

RA-KAPs solved are less than 3 and 7 respectively. 

Results are based on 100 simulations with randomly 

generated mean and variance for travel distance of 

each robot. 

Fig. 1. A pipeline should be traversed by robots 

with random travel distances. The goal is to 

select a team of robots from the given set to 

minimize the total cost such that the route is 

traversed with probabilistic guarantee. 

Fig. 2. Illustration of our two-step algorithm. The feasible 

region of CC-KAP (ℛ) is the non-convex space above the 

parabola. Fig.(a) illustrates the first step, where we find a 

feasible solution of CC-KAP (𝑠2) which is optimal in the 

intersection region ℛ2. Fig.(b) zooms in the remaining 

feasible region ℛ\ℛ2. It illustrates the second step, where we

find several feasible solutions, (𝑠4, 𝑠5) that are optimal in the 

intersection region of CC-KAP and the corresponding RA-

KAP, (ℛ4, ℛ5) such that the union of those intersection 

regions and the region in the first step, ℛ2 covers the feasible 

region of CC-KAP, e.g. ℛ ⊆ .𝑖∈{2,4,5}ℛ𝑖ڂ
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