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Introduction n optimal in the intersection of feasible regions
Multi-robot team formation under uncertain Hon ;Cifi of CC-KAP and RA-KAP, e.g., R4, Ry in Fig.2b.
environment arises in a wide variety of The procedure terminates when the
application scenarios like patrolling 8.t Zu@fz- - /\Zo'?fi > L (2) intersection regions corresponding to those
’ =1 =1 feasible solutions, e.g., R,, R=, cover the
automated transport of goods, fef01), Vie1,. . . .n 8-» Jts, Jis

remaining feasible region of CC-KAP at the

environmental monitoring and surveillance.
end of the first step, i.e., R\%,, in Fig.2a.

This problem is essentially a deterministic 0-1

We consider a pipeline surveillance problem  ynapsack problem where the travel distances
with a team of quadrotors (see Fig.1). Given a 4f robots are linear combinations of means Simulation Results

route of a pipeline with known distance (L in (u;) and variances (o;°), A is risk-averse Simulations are performed based on

Eq.1) and a set of quadrotors with different parameter and the route length is L. randomly generated means and variances for
operation cost (c; in Eq.1) and ability of travel distance capacity of each robot. We
travelling ([; in Eq.1) which is random Geometric Interpretation count the number of RA-KAPs solved which
variable, we need to form a team of . Th blem i vred D variance-  influences the efficiency and scalability of our
quadrotors from the given set to detect = PTODIEM 15 andlyzet On a 22 Variante algorithm.

mean plane (see Fig.2) where x-axis, y-axis
represent the sum of variances and means
of the selected robots respectively.

* Anyrobot team can be represented as a
point on variance-mean plane.

* The optimal solution is the point in the
non-convex feasible region (above blue
parabola in Fig.2a) with the highest
objective value.

 The optimal solution of CC-KAP is the
optimal solution of a RA-KAP with
appropriate choice of (4, L’).

* Thus, the problem is converted to a two-

leakage such that in any realization the
guadrotor team covers the pipeline with at
least a pre-specified probability while the
overall operation cost is minimized.

* Fig. 3 shows the scalability of our
algorithm as a function of the number of
robots varying from 10 to 100. The results
shown are obtained from 100 randomly

generated scenarios.

» The average numbers of RA-KAP solved is
constant (< 3) irrespective of the number of
robots while the maximum number is at
most 7 (see Fig.3).

 Qur algorithm is scalable with the number
of robots or variances of travel distances

(not shown in poster).
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Fig. 1. A pipeline should be traversed by robots

with random travel distances. The goal is to dimensional search (A, L") on variance- | e e KA
select a team of robots from the given set to mean plane. 1 e . |
minimize the total cost such that the route is ,\ P
traversed with probabilistic guarantee. H R, | R <0
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This problem is a chance-constrained s S "
knapsack problem (CC-KAP): ° ke “
¢ o DCQD djooo;mﬂwm ﬁp%%%po %% df’ d:b cPCbC'
min Z C; fz (a) o ; o (b) 2.510 EIU ” 4{fl'he nli;s'lber n%}[}robot; ’ SID v
= Fig. 2. llustration of our two-step algorithm. The feasible Fig. 3. For a given number of robots (varying from
- region of CC-KAP (R) Is the non-convex space above the 10 to 100), the average and maximum number of
s.t. [P Z bifiz L | 2p (1) parabola. Fig.(a) illustrates the first step, where we find a RA-KAPs solved are less than 3 and 7 respectively.
=1 | feasible solution of CC-KAP (s;) which is optimal in the Results are based on 100 simulations with randomly
fi €40,1}, Vi=1,...,n Intersection region R,. Fig.(b) zooms in the remaining generated mean and variance for travel distance of
feasible region R\R,. It illustrates the second step, where we each robot.
* The solution is a vector where each entry find several feasible solutions, (s,, s<) that are optimal in the Conclusion
fi ic 5 binary decision variable indicating Intersection region of CC-KAP _and the corr_espondlr?g RA-
. KAP, (R4, R5) such that the union of those intersection * We present a novel approach that uses
that a robot is selected when fl = 1. regions and the region in the first step, R, covers the feasible the solutions of a small number of
* The chance constraint guarantees that region of CC-KAP, €.9. R & Uiz 4,5y Ri-

deterministic RA-KAPs to solve a multi-
robot team formation problem optimally.
We develop a two-step algorithm to solve the « \We analyze the relationship between CC-

under any realization of the random travel Algorithm
distance, the selected team covers the

route with at least a pre-specified .
r;bag\;:it PrEmSPEL CC-KAP optimally: KAP and RA-KAP on variance-mean plane.
P Y P e . 1. Solve a sequence of RA-KAPs by The geometric insight is helpful for solving
* The chance constraint is equivalent to a . . . , ,
determinictic constraint methodically increasing A that controls other problems with chance constraint.
the slope of the straight line until the » We present simulation results showing
Liwifi = C X, o?f; = L where C is a optimal solution of a RA-KAP (s; in Fig. that our method is efficient and scalable
constant determined by p 2a) is feasible to CC-KAP. with the number of robots and the
| 2. Solve RA-KAPs by methodically changing uncertainty inn travel distance capacity.

parameters (A, L) that control the slope Acknowledgements
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knapsack problem (RA-KAP). CC-KAP, we obtain a solution that is

To solve CC-KAP, we solve a sequence of
deterministic problems, called risk-averse
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