Multi-Robot Team Formation Under Uncertain Environment

Stony Brook University, New York, USA

Fan Yang, Nilanjan Chakraborty, {fan.yang.3, nilanjan.chakraborty}@stonybrook.edu

Introduction

Multi-robot team formation under uncertain environment arises in a wide variety of application scenarios like patrolling, automated transport of goods, environmental monitoring and surveillance.

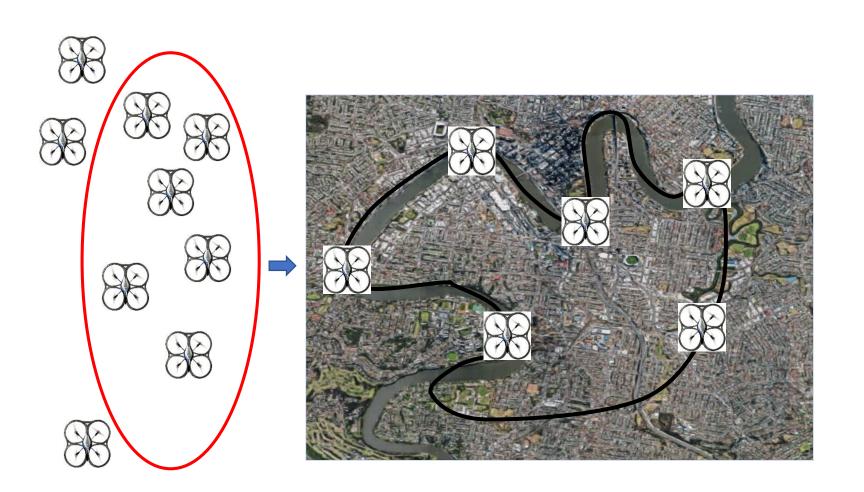
We consider a pipeline surveillance problem with a team of quadrotors (see Fig.1). Given a route of a pipeline with known distance (L in Eq.1) and a set of quadrotors with different operation cost (c_i in Eq.1) and ability of travelling (l_i in Eq.1) which is random variable, we need to form a team of quadrotors from the given set to detect leakage such that in any realization the quadrotor team covers the pipeline with at least a pre-specified probability while the overall operation cost is minimized.

$$\min \sum_{i=1}^{n} c_i f_i$$

s.t.
$$\sum_{i=1}^{n} \mu_i f_i - \lambda \sum_{i=1}^{n} \sigma_i^2 f_i \ge L' \qquad (2)$$
$$f_i \in \{0, 1\}, \quad \forall i = 1, \dots, n$$

This problem is essentially a deterministic 0-1

optimal in the intersection of feasible regions of CC-KAP and RA-KAP, e.g., \mathcal{R}_4 , \mathcal{R}_5 in Fig.2b. The *procedure terminates* when the intersection regions corresponding to those feasible solutions, e.g., \mathcal{R}_4 , \mathcal{R}_5 , cover the remaining feasible region of CC-KAP at the end of the first step, i.e., $\mathcal{R} \setminus \mathcal{R}_2$, in Fig.2a.



knapsack problem where the travel distances of robots are linear combinations of means (μ_i) and variances (σ_i^2) , λ is risk-averse parameter and the route length is L'.

Geometric Interpretation

- The problem is analyzed on a 2D variancemean plane (see Fig.2) where x-axis, y-axis represent the sum of variances and means of the selected robots respectively.
- Any robot team can be represented as a point on variance-mean plane.
- The optimal solution is the point in the non-convex feasible region (above blue parabola in Fig.2a) with the highest objective value.
- The optimal solution of CC-KAP is the optimal solution of a RA-KAP with appropriate choice of (λ, L') .

Simulation Results

Simulations are performed based on randomly generated means and variances for travel distance capacity of each robot. We count the number of RA-KAPs solved which influences the efficiency and scalability of our algorithm.

- Fig. 3 shows the scalability of our algorithm as a function of the number of robots varying from 10 to 100. The results shown are obtained from 100 randomly generated scenarios.
 - > The average numbers of RA-KAP solved is constant (< 3) irrespective of the number of robots while the maximum number is at most 7 (see Fig.3).
- Our algorithm is scalable with the number of robots or variances of travel distances (not shown in poster).

Fig. 1. A pipeline should be traversed by robots with random travel distances. The goal is to select a team of robots from the given set to minimize the total cost such that the route is traversed with probabilistic guarantee.

Problem Formulation

This problem is a chance-constrained knapsack problem (CC-KAP):

$$\min \sum_{i=1}^{n} c_i f_i$$

s.t. $\mathbb{P}\left(\sum_{i=1}^{n} \ell_i f_i \ge L\right) \ge p$ (1)
 $f_i \in \{0, 1\}, \quad \forall i = 1, \dots, n$

- The solution is a vector where each entry f_i is a binary decision variable indicating that a robot is selected when $f_i = 1$.
- The chance constraint guarantees that under any realization of the random travel

Thus, the problem is converted to a twodimensional search (λ , L') on variancemean plane.

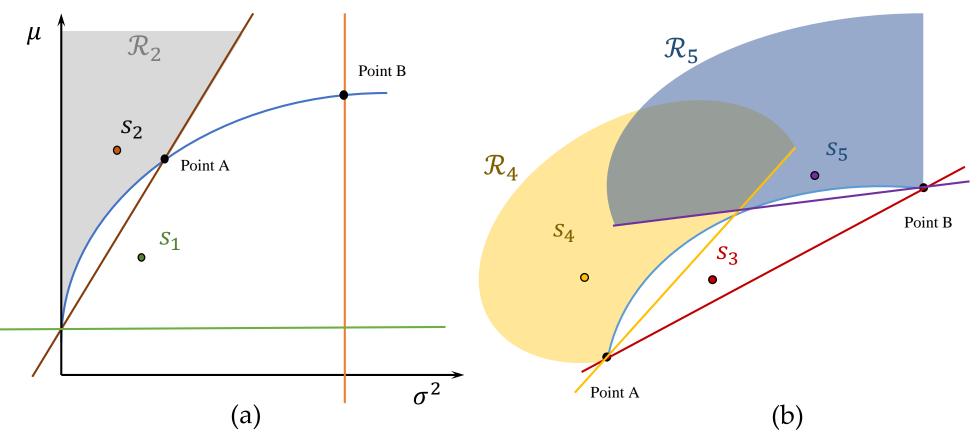


Fig. 2. Illustration of our two-step algorithm. The feasible region of CC-KAP (\mathcal{R}) is the non-convex space above the parabola. Fig.(a) illustrates the first step, where we find a feasible solution of CC-KAP (s_2) which is optimal in the *intersection region* \mathcal{R}_2 . *Fig.(b) zooms in the remaining* feasible region $\mathcal{R} \setminus \mathcal{R}_2$. It illustrates the second step, where we find several feasible solutions, (s_4, s_5) that are optimal in the intersection region of CC-KAP and the corresponding RA-KAP, $(\mathcal{R}_4, \mathcal{R}_5)$ such that the union of those intersection regions and the region in the first step, \mathcal{R}_2 covers the feasible region of CC-KAP, e.g. $\mathcal{R} \subseteq \bigcup_{i \in \{2,4,5\}} \mathcal{R}_i$.

Algorithm

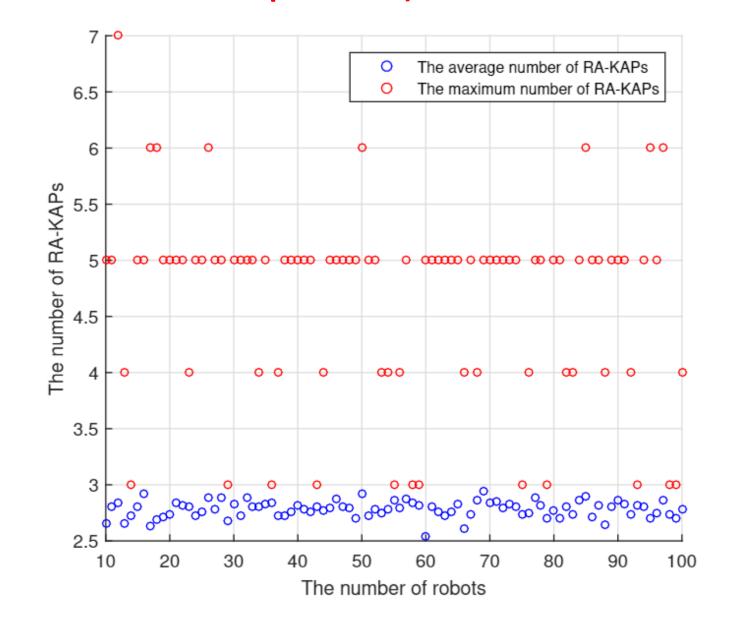


Fig. 3. For a given number of robots (varying from 10 to 100), the average and maximum number of RA-KAPs solved are less than 3 and 7 respectively. Results are based on 100 simulations with randomly generated mean and variance for travel distance of each robot.

Conclusion

We present a novel approach that uses the solutions of a small number of deterministic RA-KAPs to solve a multirobot team formation problem optimally.

distance, the selected team covers the route with at least a pre-specified probability p.

The chance constraint is equivalent to a ulletdeterministic constraint

 $\sum_{i} \mu_{i} f_{i} - C_{\sqrt{\sum_{i} \sigma_{i}^{2} f_{i}}} \ge L$ where *C* is a constant determined by p.

To solve CC-KAP, we solve a sequence of deterministic problems, called risk-averse knapsack problem (RA-KAP).

We develop a two-step algorithm to solve the CC-KAP optimally:

- Solve a sequence of RA-KAPs by methodically increasing λ that controls the slope of the straight line until the optimal solution of a RA-KAP (s_2 in Fig. 2a) is feasible to CC-KAP.
- Solve RA-KAPs by methodically changing 2. parameters (λ , L') that control the slope and y-intercept of the straight line. If the optimal solution of a RA-KAP is feasible to CC-KAP, we obtain a solution that is
- We analyze the relationship between CC-KAP and RA-KAP on variance-mean plane. The geometric insight is helpful for solving other problems with chance constraint.
- We present simulation results showing that our method is efficient and scalable with the number of robots and the
 - uncertainty inn travel distance capacity.

Acknowledgements

This work was supported in part by AFOSR award FA9550-15-1-0442.

